metadata
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:853827
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
- mteb
model-index:
- name: AbderrahmanSkiredj1/Arabic_text_embedding_for_sts
results:
- dataset:
config: ar-ar
name: MTEB STS17 (ar-ar)
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
split: test
type: mteb/sts17-crosslingual-sts
metrics:
- type: cosine_pearson
value: 84.5661961200634
- type: cosine_spearman
value: 85.04839486363485
- type: euclidean_pearson
value: 83.06651812356505
- type: euclidean_spearman
value: 84.64285835335832
- type: main_score
value: 85.04839486363485
- type: manhattan_pearson
value: 83.12273085900199
- type: manhattan_spearman
value: 84.51258675131285
task:
type: STS
datasets: []
widget:
- source_sentence: كيف يمكنني أن أخسر الوزن من خلال النظام الغذائي وتناول الطعام الصحي؟
sentences:
- >-
هل يمكن أن نحصل على (آركتشيب) في (بيغ فور) بعد إزالة كلتا المجموعتين
بشكل منفصل؟
- >-
ما هي سلسلة المطاعم الأمريكية الموجودة في النرويج؟ ما هو رأي النرويجيين
عنها؟
- كيف لي أن أخسر الوزن من خلال النظام الغذائي فقط؟
- source_sentence: هل من المقبول أن تجيب على سؤالك؟
sentences:
- ما هو أفضل كتاب على الإطلاق؟
- أي مسحوق بروتيني بدون آثار جانبية؟
- إذا أجبت على سؤالك الخاص على Quora، هل تصنيف إجابتك ينخفض؟
- source_sentence: كيف تحدد ما إذا كان البريد الإلكتروني قد تم فتحه من قبل المستلم؟
sentences:
- >-
لقد حصلت على 160 علامة في الامتحان الرئيسي ما هي فرص CSE في LNMIIT
Jaipur؟
- امرأة تعزف على آلة موسيقية
- كيف يمكن للمرء أن يتتبع ما إذا تم قراءة البريد الإلكتروني المرسل؟
- source_sentence: رجل وامرأة يتنزهان مع كلابهما
sentences:
- الزوجان يتنزهان مع كلابهما.
- رجل وامرأة يتنزهون مع خنازيرهم
- هل يمكنك الحصول على جسد مثالي بدون جهد؟
- source_sentence: >-
يتم إنتاج أمثلة جميلة من المينا، والسيراميك، والفخار في وفرة كبيرة، وغالبا
ما تتبع موضوع سلتيكي.
sentences:
- عملائنا بالكاد يستطيعون تحمل تكاليف مساعدتنا القانونية
- يتم إنتاج الفخار الصغير الذي له موضوع سلتيكي.
- يتم إنتاج عدد كبير من العناصر ذات المواضيع السلتية.
pipeline_tag: sentence-similarity
SentenceTransformer
This is a sentence-transformers model trained on the AbderrahmanSkiredj1/arabic_quora_duplicates_stsb_alue_holyquran_aranli_900k_anchor_positive_negative dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- AbderrahmanSkiredj1/arabic_quora_duplicates_stsb_alue_holyquran_aranli_900k_anchor_positive_negative
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("AbderrahmanSkiredj1/Arabic_text_embedding_for_sts")
# Run inference
sentences = [
'يتم إنتاج أمثلة جميلة من المينا، والسيراميك، والفخار في وفرة كبيرة، وغالبا ما تتبع موضوع سلتيكي.',
'يتم إنتاج عدد كبير من العناصر ذات المواضيع السلتية.',
'يتم إنتاج الفخار الصغير الذي له موضوع سلتيكي.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
AbderrahmanSkiredj1/arabic_quora_duplicates_stsb_alue_holyquran_aranli_900k_anchor_positive_negative
- Dataset: AbderrahmanSkiredj1/arabic_quora_duplicates_stsb_alue_holyquran_aranli_900k_anchor_positive_negative
- Size: 853,827 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 4 tokens
- mean: 14.54 tokens
- max: 91 tokens
- min: 4 tokens
- mean: 10.62 tokens
- max: 43 tokens
- min: 4 tokens
- mean: 10.32 tokens
- max: 35 tokens
- Samples:
anchor positive negative هل يمكنك أن تأكل نفس الشيء كل يوم وتحصل على كل التغذية التي تحتاجها؟
هل الأكل نفس الشيء كل يوم صحي؟
ما هي القوة الخارقة التي تتمنى أن تملكها؟
ثلاثة لاعبي كرة قدم، رقم 16 يرمي الكرة، رقم 71 يمنع الخصم الآخر.
لاعبي كرة القدم يرمون ويمنعون بعضهم البعض
الفريق يأكل البيتزا في مطعم
كيف تحسن مهاراتك في الكتابة؟
كيف أستمر في تحسين كتابتي؟
كيف يتم تحديد أرقام الضمان الاجتماعي؟
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Evaluation Dataset
AbderrahmanSkiredj1/arabic_quora_duplicates_stsb_alue_holyquran_aranli_900k_anchor_positive_negative
- Dataset: AbderrahmanSkiredj1/arabic_quora_duplicates_stsb_alue_holyquran_aranli_900k_anchor_positive_negative
- Size: 11,584 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 3 tokens
- mean: 16.03 tokens
- max: 88 tokens
- min: 3 tokens
- mean: 11.72 tokens
- max: 221 tokens
- min: 3 tokens
- mean: 10.59 tokens
- max: 42 tokens
- Samples:
anchor positive negative ماذا سيحدث لو توقفت الأرض عن الدوران وتدور في نفس الوقت؟
ماذا سيحدث إذا توقفت الأرض عن الدوران؟
ما هو أفضل هاتف ذكي تحت 15000؟
ثلاثة متفرجين بالغين وطفل واحد ينظرون إلى السماء بينما يقفون على الرصيف.
أربعة أشخاص ينظرون إلى السماء.
رجل وثلاثة أطفال يشاهدون بالونات الهيليوم تطفو أعلى في الهواء
ماذا تفعل الدول لمنع الحرب؟
كيف يجب على الدول أن تمنع الحرب؟
كيف يمكنني كسب المال من بدء مدونة؟
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 64per_device_eval_batch_size
: 64learning_rate
: 1e-06num_train_epochs
: 10warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 1e-06weight_decay
: 0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falsefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.0120 | 40 | 3.1459 |
0.0240 | 80 | 3.2058 |
0.0360 | 120 | 3.0837 |
0.0480 | 160 | 3.1024 |
0.0600 | 200 | 3.015 |
0.0719 | 240 | 3.1311 |
0.0839 | 280 | 3.1101 |
0.0959 | 320 | 3.1288 |
0.1079 | 360 | 3.045 |
0.1199 | 400 | 3.0488 |
0.1319 | 440 | 3.1001 |
0.1439 | 480 | 3.2334 |
0.1559 | 520 | 3.0581 |
0.1679 | 560 | 2.9821 |
0.1799 | 600 | 3.1733 |
0.1918 | 640 | 3.0658 |
0.2038 | 680 | 3.0721 |
0.2158 | 720 | 3.1647 |
0.2278 | 760 | 3.0326 |
0.2398 | 800 | 3.1014 |
0.2518 | 840 | 2.9365 |
0.2638 | 880 | 3.0642 |
0.2758 | 920 | 2.9864 |
0.2878 | 960 | 3.0939 |
0.2998 | 1000 | 3.0676 |
0.3118 | 1040 | 2.9717 |
0.3237 | 1080 | 2.9908 |
0.3357 | 1120 | 2.9506 |
0.3477 | 1160 | 2.907 |
0.3597 | 1200 | 3.0451 |
0.3717 | 1240 | 3.0002 |
0.3837 | 1280 | 2.8842 |
0.3957 | 1320 | 3.0697 |
0.4077 | 1360 | 2.8967 |
0.4197 | 1400 | 3.0008 |
0.4317 | 1440 | 3.0027 |
0.4436 | 1480 | 2.9229 |
0.4556 | 1520 | 2.9539 |
0.4676 | 1560 | 2.9415 |
0.4796 | 1600 | 2.9401 |
0.4916 | 1640 | 2.8498 |
0.5036 | 1680 | 2.9646 |
0.5156 | 1720 | 2.9231 |
0.5276 | 1760 | 2.942 |
0.5396 | 1800 | 2.8521 |
0.5516 | 1840 | 2.8362 |
0.5635 | 1880 | 2.8497 |
0.5755 | 1920 | 2.8867 |
0.5875 | 1960 | 2.9148 |
0.5995 | 2000 | 2.9343 |
0.6115 | 2040 | 2.8537 |
0.6235 | 2080 | 2.7989 |
0.6355 | 2120 | 2.8508 |
0.6475 | 2160 | 2.916 |
0.6595 | 2200 | 2.926 |
0.6715 | 2240 | 2.752 |
0.6835 | 2280 | 2.7792 |
0.6954 | 2320 | 2.8381 |
0.7074 | 2360 | 2.7455 |
0.7194 | 2400 | 2.8953 |
0.7314 | 2440 | 2.8179 |
0.7434 | 2480 | 2.8471 |
0.7554 | 2520 | 2.7538 |
0.7674 | 2560 | 2.8271 |
0.7794 | 2600 | 2.8401 |
0.7914 | 2640 | 2.7402 |
0.8034 | 2680 | 2.6439 |
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.39.3
- PyTorch: 2.2.2+cu121
- Accelerate: 0.29.1
- Datasets: 2.18.0
- Tokenizers: 0.15.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}