ARC4N3's picture
End of training
f91d113 verified
|
raw
history blame
1.75 kB
---
base_model: finiteautomata/bertweet-base-sentiment-analysis
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: experiment-model-bertweet
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# experiment-model-bertweet
This model is a fine-tuned version of [finiteautomata/bertweet-base-sentiment-analysis](https://huggingface.co./finiteautomata/bertweet-base-sentiment-analysis) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5974
- Accuracy: 0.8269
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3434 | 1.0 | 884 | 0.3707 | 0.8314 |
| 0.3057 | 2.0 | 1768 | 0.3915 | 0.8445 |
| 0.2693 | 3.0 | 2652 | 0.4510 | 0.8309 |
| 0.1861 | 4.0 | 3536 | 0.4873 | 0.8357 |
| 0.1447 | 5.0 | 4420 | 0.5974 | 0.8269 |
### Framework versions
- Transformers 4.38.1
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2