bertweet-olid / README.md
ARC4N3's picture
End of training
2174833 verified
|
raw
history blame
1.81 kB
metadata
base_model: finiteautomata/bertweet-base-sentiment-analysis
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: bertweet-olid
    results: []

bertweet-olid

This model is a fine-tuned version of finiteautomata/bertweet-base-sentiment-analysis on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0303
  • Accuracy: 0.8104
  • F1: 0.8082

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.3675 1.0 774 0.4257 0.8233 0.8217
0.3006 2.0 1548 0.3651 0.8385 0.8383
0.2461 3.0 2322 0.4812 0.8301 0.8298
0.202 4.0 3096 0.6835 0.8324 0.8324
0.1533 5.0 3870 1.0303 0.8104 0.8082

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2