|
--- |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-224 |
|
tags: |
|
- image-classification |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: vit-base-oxford-brain-tumor_x-ray |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: Mahadih534/brain-tumor-dataset |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7692307692307693 |
|
- name: Precision |
|
type: precision |
|
value: 0.7692307692307693 |
|
- name: Recall |
|
type: recall |
|
value: 0.7692307692307693 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7692307692307693 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# vit-base-oxford-brain-tumor_x-ray |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co./google/vit-base-patch16-224) on the Mahadih534/brain-tumor-dataset dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5912 |
|
- Accuracy: 0.7692 |
|
- Precision: 0.7692 |
|
- Recall: 0.7692 |
|
- F1: 0.7692 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 20 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.6752 | 1.0 | 11 | 0.4894 | 0.76 | 0.7148 | 0.76 | 0.7114 | |
|
| 0.5673 | 2.0 | 22 | 0.4630 | 0.72 | 0.57 | 0.72 | 0.6363 | |
|
| 0.6173 | 3.0 | 33 | 0.4269 | 0.92 | 0.92 | 0.92 | 0.92 | |
|
| 0.5562 | 4.0 | 44 | 0.5047 | 0.84 | 0.8653 | 0.84 | 0.8470 | |
|
| 0.5285 | 5.0 | 55 | 0.4036 | 0.92 | 0.92 | 0.92 | 0.92 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|