metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- image-classification
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-base-oxford-brain-tumor
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: Mahadih534/brain-tumor-dataset
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.6153846153846154
vit-base-oxford-brain-tumor
This model is a fine-tuned version of google/vit-base-patch16-224 on the Mahadih534/brain-tumor-dataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.6331
- Accuracy: 0.6154
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 13 | 0.6259 | 0.64 |
No log | 2.0 | 26 | 0.5560 | 0.8 |
No log | 3.0 | 39 | 0.5105 | 0.88 |
No log | 4.0 | 52 | 0.4766 | 0.88 |
No log | 5.0 | 65 | 0.4543 | 0.88 |
No log | 6.0 | 78 | 0.4433 | 0.88 |
No log | 7.0 | 91 | 0.4400 | 0.88 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1