ALBADDAWI's picture
ft-wav2vec2-with-minds
be17da2 verified
|
raw
history blame
4.43 kB
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: ft-wav2vec2-with-minds
    results: []

ft-wav2vec2-with-minds

This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0119
  • Accuracy: 0.9972

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 120
  • eval_batch_size: 120
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 480
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
5.1595 1.0 9 5.2504 0.1125
3.706 2.0 18 1.7425 0.3261
1.1096 3.0 27 0.5152 0.7985
0.3567 4.0 36 0.1222 0.9728
0.1645 5.0 45 0.0988 0.9850
0.1539 6.0 54 0.0696 0.9878
0.1329 7.0 63 0.0783 0.9831
0.1023 8.0 72 0.0833 0.9841
0.1923 9.0 81 0.0733 0.9775
0.108 10.0 90 0.0294 0.9934
0.0884 11.0 99 0.0331 0.9897
0.1745 12.0 108 0.0288 0.9944
0.0793 13.0 117 0.0545 0.9869
0.0823 14.0 126 0.0551 0.9850
0.0857 15.0 135 0.0401 0.9925
0.0738 16.0 144 0.0329 0.9906
0.0905 17.0 153 0.0324 0.9878
0.1049 18.0 162 0.0379 0.9925
0.0775 19.0 171 0.0410 0.9906
0.07 20.0 180 0.0315 0.9925
0.0519 21.0 189 0.0361 0.9897
0.0679 22.0 198 0.0470 0.9878
0.0771 23.0 207 0.0258 0.9934
0.0588 24.0 216 0.0322 0.9934
0.0566 25.0 225 0.0251 0.9906
0.0665 26.0 234 0.0162 0.9963
0.06 27.0 243 0.0178 0.9953
0.0462 28.0 252 0.0183 0.9944
0.0527 29.0 261 0.0669 0.9831
0.0378 30.0 270 0.0163 0.9953
0.0418 31.0 279 0.0207 0.9963
0.0335 32.0 288 0.0159 0.9953
0.0447 33.0 297 0.0151 0.9963
0.0455 34.0 306 0.0161 0.9953
0.0368 35.0 315 0.0163 0.9944
0.043 36.0 324 0.0136 0.9963
0.0361 37.0 333 0.0181 0.9963
0.0374 38.0 342 0.0149 0.9963
0.0397 39.0 351 0.0119 0.9963
0.0329 40.0 360 0.0164 0.9953
0.0933 41.0 369 0.0119 0.9972
0.0311 42.0 378 0.0144 0.9963
0.0325 43.0 387 0.0131 0.9963
0.0418 44.0 396 0.0207 0.9963
0.0251 45.0 405 0.0178 0.9963
0.0409 46.0 414 0.0149 0.9953
0.0444 47.0 423 0.0155 0.9953
0.0318 48.0 432 0.0169 0.9953
0.0465 49.0 441 0.0171 0.9953
0.0308 50.0 450 0.0173 0.9953

Framework versions

  • Transformers 4.35.2
  • Pytorch 1.12.1+cu116
  • Datasets 2.15.0
  • Tokenizers 0.15.2