ALBADDAWI's picture
ft-wav2vec2-with-minds
aa6dd69 verified
|
raw
history blame
4.56 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: ft-wav2vec2-with-minds
    results: []

ft-wav2vec2-with-minds

This model is a fine-tuned version of facebook/wav2vec2-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0732
  • Accuracy: 0.9822

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 120
  • eval_batch_size: 120
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 480
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0814 1.0 9 2.0883 0.1143
2.064 2.0 18 2.0619 0.1678
2.0232 3.0 27 1.9712 0.2709
1.861 4.0 36 1.7455 0.3880
1.6003 5.0 45 1.5115 0.4724
1.4972 6.0 54 1.2623 0.5998
1.2332 7.0 63 1.0138 0.6935
1.081 8.0 72 0.8169 0.7601
0.9925 9.0 81 0.7757 0.7873
0.8516 10.0 90 0.6470 0.8163
0.7544 11.0 99 0.7208 0.7873
0.7006 12.0 108 0.5074 0.8557
0.591 13.0 117 0.4326 0.8782
0.5155 14.0 126 0.3707 0.9053
0.4715 15.0 135 0.3116 0.9091
0.4461 16.0 144 0.3167 0.9138
0.445 17.0 153 0.2963 0.9250
0.3899 18.0 162 0.2499 0.9353
0.3656 19.0 171 0.2756 0.9194
0.3255 20.0 180 0.2280 0.9297
0.2756 21.0 189 0.2178 0.9438
0.3119 22.0 198 0.1858 0.9513
0.2595 23.0 207 0.1794 0.9475
0.2713 24.0 216 0.1737 0.9466
0.2336 25.0 225 0.1758 0.9531
0.2359 26.0 234 0.1690 0.9485
0.2229 27.0 243 0.1336 0.9606
0.2145 28.0 252 0.1338 0.9700
0.1986 29.0 261 0.1525 0.9625
0.1811 30.0 270 0.1415 0.9653
0.165 31.0 279 0.1208 0.9672
0.1755 32.0 288 0.1266 0.9634
0.175 33.0 297 0.1269 0.9672
0.149 34.0 306 0.1072 0.9728
0.1606 35.0 315 0.1183 0.9738
0.161 36.0 324 0.1009 0.9719
0.1533 37.0 333 0.1000 0.9728
0.1239 38.0 342 0.1109 0.9691
0.1353 39.0 351 0.0905 0.9775
0.1287 40.0 360 0.0920 0.9738
0.223 41.0 369 0.0855 0.9775
0.1302 42.0 378 0.0748 0.9794
0.1249 43.0 387 0.0732 0.9822
0.1552 44.0 396 0.0688 0.9822
0.098 45.0 405 0.0777 0.9766
0.1459 46.0 414 0.0634 0.9813
0.1267 47.0 423 0.0653 0.9822
0.149 48.0 432 0.0709 0.9794
0.1135 49.0 441 0.0660 0.9813
0.118 50.0 450 0.0652 0.9813

Framework versions

  • Transformers 4.35.2
  • Pytorch 1.12.1+cu116
  • Datasets 2.15.0
  • Tokenizers 0.15.2