DeepCode-7B-Aurora-v5
DeepCode-7B-Aurora-v5 is a merge of the following models using LazyMergekit:
- Kukedlc/NeuralMaths-Experiment-7b
- lemon-mint/gemma-ko-7b-instruct-v0.62
- Ppoyaa/StarMonarch-7B
- automerger/YamshadowExperiment28-7B
- ichigoberry/MonarchPipe-7B-slerp
- deepseek-ai/deepseek-coder-7b-instruct-v1.5
- Kukedlc/Neural-4-Maths-7b
𧩠Configuration
models:
- model: Kukedlc/NeuralMaths-Experiment-7b
parameters:
weight: 1
- model: lemon-mint/gemma-ko-7b-instruct-v0.62
parameters:
weight: 1
- model: Ppoyaa/StarMonarch-7B
parameters:
weight: 1
- model: automerger/YamshadowExperiment28-7B
parameters:
weight: 1
- model: ichigoberry/MonarchPipe-7B-slerp
parameters:
weight: 1
- model: deepseek-ai/deepseek-coder-7b-instruct-v1.5
parameters:
weight: 1
- model: Kukedlc/Neural-4-Maths-7b
parameters:
weight: 1
merge_method: model_stock
base_model: deepseek-ai/deepseek-math-7b-rl
dtype: float16
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "ALBADDAWI/DeepCode-7B-Aurora-v5"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Model tree for ALBADDAWI/DeepCode-7B-Aurora-v5
Base model
Kukedlc/Neural-4-Maths-7b