MARTINI_enrich_BERTopic_vaxxpasssolutions
This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
Usage
To use this model, please install BERTopic:
pip install -U bertopic
You can use the model as follows:
from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_vaxxpasssolutions")
topic_model.get_topic_info()
Topic overview
- Number of topics: 7
- Number of training documents: 801
Click here for an overview of all topics.
Topic ID | Topic Keywords | Topic Frequency | Label |
---|---|---|---|
-1 | vaccinated - pfizer - cancers - symptoms - dna | 45 | -1_vaccinated_pfizer_cancers_symptoms |
0 | vaccines - myocarditis - died - strokes - injected | 288 | 0_vaccines_myocarditis_died_strokes |
1 | vaccinated - cøvid - passport - zertifikate - qr | 133 | 1_vaccinated_cøvid_passport_zertifikate |
2 | giftcards - atm - cash - cloned - 70k | 119 | 2_giftcards_atm_cash_cloned |
3 | hydroxychloroquine - fenbendazole - 250mg - amoxicillin - budesonide | 101 | 3_hydroxychloroquine_fenbendazole_250mg_amoxicillin |
4 | covid - misinformation - monkeypox - freedom - satan | 61 | 4_covid_misinformation_monkeypox_freedom |
5 | dmt - pills - 100mg - oxycodone - adderall | 54 | 5_dmt_pills_100mg_oxycodone |
Training hyperparameters
- calculate_probabilities: True
- language: None
- low_memory: False
- min_topic_size: 10
- n_gram_range: (1, 1)
- nr_topics: None
- seed_topic_list: None
- top_n_words: 10
- verbose: False
- zeroshot_min_similarity: 0.7
- zeroshot_topic_list: None
Framework versions
- Numpy: 1.26.4
- HDBSCAN: 0.8.40
- UMAP: 0.5.7
- Pandas: 2.2.3
- Scikit-Learn: 1.5.2
- Sentence-transformers: 3.3.1
- Transformers: 4.46.3
- Numba: 0.60.0
- Plotly: 5.24.1
- Python: 3.10.12
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.