MARTINI_enrich_BERTopic_vaxxpasssolutions

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_vaxxpasssolutions")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 7
  • Number of training documents: 801
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 vaccinated - pfizer - cancers - symptoms - dna 45 -1_vaccinated_pfizer_cancers_symptoms
0 vaccines - myocarditis - died - strokes - injected 288 0_vaccines_myocarditis_died_strokes
1 vaccinated - cøvid - passport - zertifikate - qr 133 1_vaccinated_cøvid_passport_zertifikate
2 giftcards - atm - cash - cloned - 70k 119 2_giftcards_atm_cash_cloned
3 hydroxychloroquine - fenbendazole - 250mg - amoxicillin - budesonide 101 3_hydroxychloroquine_fenbendazole_250mg_amoxicillin
4 covid - misinformation - monkeypox - freedom - satan 61 4_covid_misinformation_monkeypox_freedom
5 dmt - pills - 100mg - oxycodone - adderall 54 5_dmt_pills_100mg_oxycodone

Training hyperparameters

  • calculate_probabilities: True
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.3
  • Scikit-Learn: 1.5.2
  • Sentence-transformers: 3.3.1
  • Transformers: 4.46.3
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.10.12
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.