MARTINI_enrich_BERTopic_rassemblementnationalvaucluse

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_rassemblementnationalvaucluse")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 6
  • Number of training documents: 486
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 departement - campagne - metropolitain - jaouen - novembre 21 -1_departement_campagne_metropolitain_jaouen
0 republique - reformedesretraites - macron - rejoignez - laxisme 277 0_republique_reformedesretraites_macron_rejoignez
1 departement - gouvernement - macroniste - policiers - annonce 65 1_departement_gouvernement_macroniste_policiers
2 rnvaucluse - departementaux - europeennes - beaucaire - septembre 46 2_rnvaucluse_departementaux_europeennes_beaucaire
3 rnvaucluse - janvier - soiree - merci - dussausaye 41 3_rnvaucluse_janvier_soiree_merci
4 agriculteursencolere - montelimar - parlement - macronistes - onmarchesurlatete 36 4_agriculteursencolere_montelimar_parlement_macronistes

Training hyperparameters

  • calculate_probabilities: True
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.3
  • Scikit-Learn: 1.5.2
  • Sentence-transformers: 3.3.1
  • Transformers: 4.46.3
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.10.12
Downloads last month
5
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.