MARTINI_enrich_BERTopic_nationalistesfr

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_nationalistesfr")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 7
  • Number of training documents: 813
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 russie - campagne - dombass - zemmour - europeenne 36 -1_russie_campagne_dombass_zemmour
0 novembre - vendredi - perpignan - mouvement - edouard 289 0_novembre_vendredi_perpignan_mouvement
1 sioniste - hollande - herve - avocats - jugement 207 1_sioniste_hollande_herve_avocats
2 bastille - abdelkader - septembre - patriotisme - tricolore 81 2_bastille_abdelkader_septembre_patriotisme
3 pandemie - publiques - vaccins - masques - perpignan 75 3_pandemie_publiques_vaccins_masques
4 gauchistes - reptilienne - accueil - migratoire - raciale 67 4_gauchistes_reptilienne_accueil_migratoire
5 gloire - souhaitent - vainqueurs - croix - mitraille 58 5_gloire_souhaitent_vainqueurs_croix

Training hyperparameters

  • calculate_probabilities: True
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.3
  • Scikit-Learn: 1.5.2
  • Sentence-transformers: 3.3.1
  • Transformers: 4.46.3
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.10.12
Downloads last month
4
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.