MARTINI_enrich_BERTopic_anto_boyle_channel

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_anto_boyle_channel")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 24
  • Number of training documents: 3064
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 ukraine - dublin - hold - saturday - antoboyle1 20 -1_ukraine_dublin_hold_saturday
0 migrants - galway - amnesty - ukrainians - protests 1436 0_migrants_galway_amnesty_ukrainians
1 fauci - pandemic - unvaccinated - illuminati - masks 233 1_fauci_pandemic_unvaccinated_illuminati
2 ukraine - warsaw - andrzej - farmers - brussels 173 2_ukraine_warsaw_andrzej_farmers
3 bundeswehr - putin - ukraine - missiles - leaked 135 3_bundeswehr_putin_ukraine_missiles
4 gaza - hamas - netanyahu - jerusalem - civilians 126 4_gaza_hamas_netanyahu_jerusalem
5 paedophiles - lgbtqia - schools - irish - transvestite 99 5_paedophiles_lgbtqia_schools_irish
6 russia - shoigu - superweapon - sarmat - satellites 91 6_russia_shoigu_superweapon_sarmat
7 ukraine - zelensky - biden - congressmen - pentagon 75 7_ukraine_zelensky_biden_congressmen
8 sanctions - gazprom - eu - slovakia - export 64 8_sanctions_gazprom_eu_slovakia
9 dublin - heuston - rathfarnham - landmark - 1916 59 9_dublin_heuston_rathfarnham_landmark
10 antoboyle1 - chat - donate - websites - epstein 57 10_antoboyle1_chat_donate_websites
11 donetsk - missiles - zaporizhzhya - paratroopers - drone 56 11_donetsk_missiles_zaporizhzhya_paratroopers
12 ukraine - macron - france - nato - soldiers 56 12_ukraine_macron_france_nato
13 chatroom - invite - hey - anthony - whatsapp 55 13_chatroom_invite_hey_anthony
14 trump - supreme - judges - elected - overturned 52 14_trump_supreme_judges_elected
15 navalny - litvinenko - kremlin - yeltsin - peskov 51 15_navalny_litvinenko_kremlin_yeltsin
16 sanctions - assets - yellen - confiscating - lipetsk 46 16_sanctions_assets_yellen_confiscating
17 yemen - tankers - airstrikes - suez - submarine 39 17_yemen_tankers_airstrikes_suez
18 irishfreedomradio - livestreaming - deirdre - 9pm - fitzsimmons 35 18_irishfreedomradio_livestreaming_deirdre_9pm
19 ukraine - munitions - eu - prague - dmytro 29 19_ukraine_munitions_eu_prague
20 avdeyevka - donetsk - semyonovka - kupyansk - regiment 29 20_avdeyevka_donetsk_semyonovka_kupyansk
21 raped - kidnapped - ostrava - arrested - police 25 21_raped_kidnapped_ostrava_arrested
22 kuzminov - spaniards - defector - murdered - helicopter 23 22_kuzminov_spaniards_defector_murdered

Training hyperparameters

  • calculate_probabilities: True
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.3
  • Scikit-Learn: 1.5.2
  • Sentence-transformers: 3.3.1
  • Transformers: 4.46.3
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.10.12
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.