MARTINI_enrich_BERTopic_COVID19VACCINEVICTIMSANDFAMILIES

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_COVID19VACCINEVICTIMSANDFAMILIES")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 6
  • Number of training documents: 544
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 vaers - pfizer - polio - myocarditis - lymphadenopathy 28 -1_vaers_pfizer_polio_myocarditis
0 globalist - tyranny - pandemic - cyber - everything 268 0_globalist_tyranny_pandemic_cyber
1 vaers - pfizer - clots - symptoms - overdose 71 1_vaers_pfizer_clots_symptoms
2 pfizer - deaths - 2023 - injected - dna 67 2_pfizer_deaths_2023_injected
3 fauci - sars - lockdowns - misinformation - laboratory 56 3_fauci_sars_lockdowns_misinformation
4 vax - hydroxychloroquine - zelenko - vladimir - surgeons 54 4_vax_hydroxychloroquine_zelenko_vladimir

Training hyperparameters

  • calculate_probabilities: True
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.3
  • Scikit-Learn: 1.5.2
  • Sentence-transformers: 3.3.1
  • Transformers: 4.46.3
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.10.12
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.