|
--- |
|
license: mit |
|
--- |
|
Finetune based on ChemLLM-20B and InterViT-6B |
|
|
|
|
|
## Model Usage |
|
|
|
We provide an example code to run ChemVLM-26B using `transformers`. |
|
|
|
You can also use our [online demo](https://v.chemllm.org/) for a quick experience of this model. |
|
|
|
> Please use transformers==4.37.2 to ensure the model works normally. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
import torchvision.transforms as T |
|
from PIL import Image |
|
|
|
from torchvision.transforms.functional import InterpolationMode |
|
|
|
|
|
IMAGENET_MEAN = (0.485, 0.456, 0.406) |
|
IMAGENET_STD = (0.229, 0.224, 0.225) |
|
|
|
|
|
def build_transform(input_size): |
|
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD |
|
transform = T.Compose([ |
|
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), |
|
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), |
|
T.ToTensor(), |
|
T.Normalize(mean=MEAN, std=STD) |
|
]) |
|
return transform |
|
|
|
|
|
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): |
|
best_ratio_diff = float('inf') |
|
best_ratio = (1, 1) |
|
area = width * height |
|
for ratio in target_ratios: |
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
if ratio_diff < best_ratio_diff: |
|
best_ratio_diff = ratio_diff |
|
best_ratio = ratio |
|
elif ratio_diff == best_ratio_diff: |
|
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: |
|
best_ratio = ratio |
|
return best_ratio |
|
|
|
|
|
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False): |
|
orig_width, orig_height = image.size |
|
aspect_ratio = orig_width / orig_height |
|
|
|
# calculate the existing image aspect ratio |
|
target_ratios = set( |
|
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if |
|
i * j <= max_num and i * j >= min_num) |
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
# find the closest aspect ratio to the target |
|
target_aspect_ratio = find_closest_aspect_ratio( |
|
aspect_ratio, target_ratios, orig_width, orig_height, image_size) |
|
|
|
# calculate the target width and height |
|
target_width = image_size * target_aspect_ratio[0] |
|
target_height = image_size * target_aspect_ratio[1] |
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
# resize the image |
|
resized_img = image.resize((target_width, target_height)) |
|
processed_images = [] |
|
for i in range(blocks): |
|
box = ( |
|
(i % (target_width // image_size)) * image_size, |
|
(i // (target_width // image_size)) * image_size, |
|
((i % (target_width // image_size)) + 1) * image_size, |
|
((i // (target_width // image_size)) + 1) * image_size |
|
) |
|
# split the image |
|
split_img = resized_img.crop(box) |
|
processed_images.append(split_img) |
|
assert len(processed_images) == blocks |
|
if use_thumbnail and len(processed_images) != 1: |
|
thumbnail_img = image.resize((image_size, image_size)) |
|
processed_images.append(thumbnail_img) |
|
return processed_images |
|
|
|
|
|
def load_image(image_file, input_size=448, max_num=6): |
|
image = Image.open(image_file).convert('RGB') |
|
transform = build_transform(input_size=input_size) |
|
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) |
|
pixel_values = [transform(image) for image in images] |
|
pixel_values = torch.stack(pixel_values) |
|
return pixel_values |
|
|
|
path = "AI4Chem/ChemVLM-26B" |
|
# If you have an 80G A100 GPU, you can put the entire model on a single GPU. |
|
model = AutoModel.from_pretrained( |
|
path, |
|
torch_dtype=torch.bfloat16, |
|
low_cpu_mem_usage=True, |
|
trust_remote_code=True).eval().cuda() |
|
# Otherwise, you need to set device_map='auto' to use multiple GPUs for inference. |
|
# import os |
|
# os.environ["CUDA_LAUNCH_BLOCKING"] = "1" |
|
# model = AutoModel.from_pretrained( |
|
# path, |
|
# torch_dtype=torch.bfloat16, |
|
# low_cpu_mem_usage=True, |
|
# trust_remote_code=True, |
|
# device_map='auto').eval() |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True) |
|
# set the max number of tiles in `max_num` |
|
pixel_values = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda() |
|
|
|
generation_config = dict( |
|
num_beams=1, |
|
max_new_tokens=512, |
|
do_sample=False, |
|
) |
|
|
|
# single-round single-image conversation |
|
question = "请详细描述图片" # Please describe the picture in detail |
|
response = model.chat(tokenizer, pixel_values, question, generation_config) |
|
print(question, response) |
|
|
|
# multi-round single-image conversation |
|
question = "请详细描述图片" # Please describe the picture in detail |
|
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True) |
|
print(question, response) |
|
|
|
question = "请根据图片写一首诗" # Please write a poem according to the picture |
|
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True) |
|
print(question, response) |
|
|
|
# multi-round multi-image conversation |
|
pixel_values1 = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda() |
|
pixel_values2 = load_image('./examples/image2.jpg', max_num=6).to(torch.bfloat16).cuda() |
|
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0) |
|
|
|
question = "详细描述这两张图片" # Describe the two pictures in detail |
|
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True) |
|
print(question, response) |
|
|
|
question = "这两张图片的相同点和区别分别是什么" # What are the similarities and differences between these two pictures |
|
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True) |
|
print(question, response) |
|
|
|
# batch inference (single image per sample) |
|
pixel_values1 = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda() |
|
pixel_values2 = load_image('./examples/image2.jpg', max_num=6).to(torch.bfloat16).cuda() |
|
image_counts = [pixel_values1.size(0), pixel_values2.size(0)] |
|
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0) |
|
|
|
questions = ["Describe the image in detail."] * len(image_counts) |
|
responses = model.batch_chat(tokenizer, pixel_values, |
|
image_counts=image_counts, |
|
questions=questions, |
|
generation_config=generation_config) |
|
for question, response in zip(questions, responses): |
|
print(question) |
|
print(response) |
|
``` |
|
|
|
## License |
|
|
|
This project is released under the MIT license. |
|
|
|
## Acknowledgement |
|
|
|
ChemVLM is built on [InternVL](https://github.com/OpenGVLab/InternVL). |
|
|
|
InternVL is built with reference to the code of the following projects: [OpenAI CLIP](https://github.com/openai/CLIP), [Open CLIP](https://github.com/mlfoundations/open_clip), [CLIP Benchmark](https://github.com/LAION-AI/CLIP_benchmark), [EVA](https://github.com/baaivision/EVA/tree/master), [InternImage](https://github.com/OpenGVLab/InternImage), [ViT-Adapter](https://github.com/czczup/ViT-Adapter), [MMSegmentation](https://github.com/open-mmlab/mmsegmentation), [Transformers](https://github.com/huggingface/transformers), [DINOv2](https://github.com/facebookresearch/dinov2), [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2), [Qwen-VL](https://github.com/QwenLM/Qwen-VL/tree/master/eval_mm), and [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). Thanks for their awesome work! |
|
|