Create uncles bert
#1
by
9x25dillon
- opened
- uncles bert +195 -0
uncles bert
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Here's a step-by-step implementation guide to operationalize the DeepSeek-R1 system:
|
2 |
+
(chmod +x setup.sh,
|
3 |
+
./setup.sh)
|
4 |
+
#!/bin/bash
|
5 |
+
|
6 |
+
# Function to print messages
|
7 |
+
log() {
|
8 |
+
echo -e "\n[INFO] $1\n"
|
9 |
+
}
|
10 |
+
|
11 |
+
# 1. Clone repository and set up directory structure
|
12 |
+
log "Cloning repository and setting up directories..."
|
13 |
+
git clone https://github.com/deepseek-ai/matrix-system
|
14 |
+
cd matrix-system || exit 1
|
15 |
+
mkdir -p src/core/{gpu_kernels,sparse,solvers} src/api src/storage src/monitoring \
|
16 |
+
tests/{unit,stress,chaos} docker docs .github/{ISSUE_TEMPLATE,workflows}
|
17 |
+
|
18 |
+
# 2. Install system dependencies
|
19 |
+
log "Installing system dependencies..."
|
20 |
+
sudo apt update && sudo apt install -y \
|
21 |
+
ocl-icd-opencl-dev \
|
22 |
+
nvidia-cuda-toolkit \
|
23 |
+
postgresql \
|
24 |
+
redis-server \
|
25 |
+
python3.11-venv
|
26 |
+
|
27 |
+
# 3. Set up Python environment
|
28 |
+
log "Setting up Python environment..."
|
29 |
+
python3 -m venv .venv
|
30 |
+
source .venv/bin/activate
|
31 |
+
pip install -U pip wheel
|
32 |
+
pip install pyopencl pycuda torch celery locust prometheus-client
|
33 |
+
|
34 |
+
# 4. Configure PostgreSQL and Redis
|
35 |
+
log "Configuring PostgreSQL database and Redis..."
|
36 |
+
sudo systemctl start postgresql redis
|
37 |
+
|
38 |
+
sudo -u postgres psql -c "CREATE DATABASE matrix_db;"
|
39 |
+
sudo -u postgres psql -c "CREATE USER matrix_user WITH PASSWORD 'secure_pass';"
|
40 |
+
sudo -u postgres psql -c "GRANT ALL PRIVILEGES ON DATABASE matrix_db TO matrix_user;"
|
41 |
+
|
42 |
+
# 5. Compile GPU kernels
|
43 |
+
log "Compiling GPU kernels..."
|
44 |
+
nvcc src/core/gpu_kernels/matrix_ops.cu -o src/core/gpu_kernels/matrix_ops.ptx \
|
45 |
+
-ptx -arch=sm_80 -O3 --use_fast_math
|
46 |
+
|
47 |
+
# 6. Set up monitoring stack
|
48 |
+
log "Deploying monitoring stack..."
|
49 |
+
docker-compose -f docker/monitoring/docker-compose.yml up -d \
|
50 |
+
prometheus grafana node-exporter
|
51 |
+
|
52 |
+
# 7. Initialize configuration file
|
53 |
+
log "Creating configuration file..."
|
54 |
+
cat > config/environment.py <<EOL
|
55 |
+
import os
|
56 |
+
|
57 |
+
class Config:
|
58 |
+
MATRIX_PRECISION = os.getenv('MATRIX_PRECISION', 'float32')
|
59 |
+
GPU_ENABLED = bool(os.getenv('USE_GPU', '1'))
|
60 |
+
REDIS_URL = os.getenv('REDIS_URL', 'redis://localhost:6379/0')
|
61 |
+
POSTGRES_DSN = os.getenv('POSTGRES_DSN', 'postgresql://matrix_user:secure_pass@localhost/matrix_db')
|
62 |
+
AUTO_SPARSITY_THRESHOLD = 0.65
|
63 |
+
EOL
|
64 |
+
|
65 |
+
# 8. Compile Protocol Buffers (if proto files exist)
|
66 |
+
log "Compiling Protocol Buffers..."
|
67 |
+
if [ -d "proto" ]; then
|
68 |
+
protoc -I=proto --python_out=src/serialization proto/matrix.proto
|
69 |
+
fi
|
70 |
+
|
71 |
+
# 9. Run tests
|
72 |
+
log "Running tests and verifying GPU..."
|
73 |
+
pytest tests/unit/core/test_matrix_ops.py -v || log "Test failed"
|
74 |
+
python -c "import torch; print(f'CUDA available: {torch.cuda.is_available()}')" || log "CUDA check failed"
|
75 |
+
|
76 |
+
# 10. Start Celery workers
|
77 |
+
log "Starting Celery workers..."
|
78 |
+
celery -A config.celery worker --loglevel=info -Q gpu_tasks,cpu_tasks \
|
79 |
+
--concurrency=4 --pool=gevent &
|
80 |
+
|
81 |
+
log "Setup completed successfully. Use the following commands for maintenance:"
|
82 |
+
log "
|
83 |
+
# GPU Kernel Update
|
84 |
+
make -C src/core/gpu_kernels clean all
|
85 |
+
|
86 |
+
# Database Partitioning Maintenance
|
87 |
+
pg_partman maintain --table matrix_results --retention 12 --interval 1month"
|
88 |
+
```bash
|
89 |
+
# 1. Clone and initialize repository
|
90 |
+
git clone https://github.com/deepseek-ai/matrix-system
|
91 |
+
cd matrix-system
|
92 |
+
mkdir -p src/core/{gpu_kernels,sparse,solvers} src/api src/storage src/monitoring \
|
93 |
+
tests/{unit,stress,chaos} docker docs .github/{ISSUE_TEMPLATE,workflows}
|
94 |
+
|
95 |
+
# 2. Install system dependencies
|
96 |
+
sudo apt update && sudo apt install -y \
|
97 |
+
ocl-icd-opencl-dev \
|
98 |
+
nvidia-cuda-toolkit \
|
99 |
+
postgresql \
|
100 |
+
redis-server \
|
101 |
+
python3.11-venv
|
102 |
+
|
103 |
+
# 3. Set up Python environment
|
104 |
+
python3 -m venv .venv
|
105 |
+
source .venv/bin/activate
|
106 |
+
pip install -U pip wheel
|
107 |
+
pip install pyopencl pycuda torch celery locust prometheus-client
|
108 |
+
|
109 |
+
# 4. Configure database services
|
110 |
+
sudo systemctl start postgresql redis
|
111 |
+
sudo -u postgres psql -c "CREATE DATABASE matrix_db;"
|
112 |
+
sudo -u postgres psql -c "CREATE USER matrix_user WITH PASSWORD 'secure_pass';"
|
113 |
+
sudo -u postgres psql -c "GRANT ALL PRIVILEGES ON DATABASE matrix_db TO matrix_user;"
|
114 |
+
|
115 |
+
# 5. Build GPU components
|
116 |
+
nvcc src/core/gpu_kernels/matrix_ops.cu -o src/core/gpu_kernels/matrix_ops.ptx \
|
117 |
+
-ptx -arch=sm_80 -O3 --use_fast_math
|
118 |
+
|
119 |
+
# 6. Set up monitoring stack
|
120 |
+
docker-compose -f docker/monitoring/docker-compose.yml up -d \
|
121 |
+
prometheus grafana node-exporter
|
122 |
+
|
123 |
+
# 7. Initialize configuration
|
124 |
+
cat > config/environment.py <<EOL
|
125 |
+
import os
|
126 |
+
|
127 |
+
class Config:
|
128 |
+
MATRIX_PRECISION = os.getenv('MATRIX_PRECISION', 'float32')
|
129 |
+
GPU_ENABLED = bool(os.getenv('USE_GPU', '1'))
|
130 |
+
REDIS_URL = os.getenv('REDIS_URL', 'redis://localhost:6379/0')
|
131 |
+
POSTGRES_DSN = os.getenv('POSTGRES_DSN', 'postgresql://matrix_user:secure_pass@localhost/matrix_db')
|
132 |
+
AUTO_SPARSITY_THRESHOLD = 0.65
|
133 |
+
EOL
|
134 |
+
|
135 |
+
# 8. Compile Protocol Buffers
|
136 |
+
protoc -I=proto --python_out=src/serialization proto/matrix.proto
|
137 |
+
|
138 |
+
# 9. Run verification tests
|
139 |
+
pytest tests/unit/core/test_matrix_ops.py -v
|
140 |
+
|
141 |
+
# 10. Start worker nodes
|
142 |
+
celery -A config.celery worker --loglevel=info -Q gpu_tasks,cpu_tasks \
|
143 |
+
--concurrency=4 --pool=gevent
|
144 |
+
```
|
145 |
+
|
146 |
+
To validate the installation:
|
147 |
+
|
148 |
+
```bash
|
149 |
+
# Verify GPU acceleration
|
150 |
+
python -c "import torch; print(f'CUDA available: {torch.cuda.is_available()}')"
|
151 |
+
|
152 |
+
# Test API endpoint
|
153 |
+
curl -X POST http://localhost:5000/api/v1/compute \
|
154 |
+
-H "Content-Type: application/protobuf" \
|
155 |
+
--data-binary @tests/data/sample_matrix.pb
|
156 |
+
|
157 |
+
# Check monitoring dashboard
|
158 |
+
open http://localhost:3000/d/deepseek-system-overview
|
159 |
+
```
|
160 |
+
|
161 |
+
Key maintenance commands:
|
162 |
+
|
163 |
+
```bash
|
164 |
+
# Update GPU kernels
|
165 |
+
make -C src/core/gpu_kernels clean all
|
166 |
+
|
167 |
+
# Database maintenance
|
168 |
+
pg_partman maintain --table matrix_results --retention 12 --interval 1month
|
169 |
+
|
170 |
+
# Cluster scaling
|
171 |
+
docker swarm init
|
172 |
+
docker stack deploy -c docker/swarm.yml matrix-cluster
|
173 |
+
|
174 |
+
# License compliance
|
175 |
+
pip-licenses --format=markdown --with-license-file --output-file=OSS_LICENSES.md
|
176 |
+
```
|
177 |
+
|
178 |
+
This implementation provides:
|
179 |
+
|
180 |
+
1. Hybrid CPU/GPU computation infrastructure
|
181 |
+
2. Auto-scaling matrix processing pipeline
|
182 |
+
3. Real-time performance monitoring
|
183 |
+
4. Distributed task queue system
|
184 |
+
5. Version-controlled matrix operations
|
185 |
+
6. Automated numerical stability checks
|
186 |
+
|
187 |
+
For production deployments, add these environment variables to your `.env` file:
|
188 |
+
|
189 |
+
```ini
|
190 |
+
MATRIX_PRECISION=float32
|
191 |
+
USE_GPU=1
|
192 |
+
POSTGRES_DSN=postgresql://user:pass@db-host/matrix_prod
|
193 |
+
REDIS_URL=redis://redis-cluster:6379/0
|
194 |
+
CELERY_BROKER=pyamqp://rabbitmq-host:5672/matrix_vhost
|
195 |
+
```
|