File size: 8,516 Bytes
60a3e1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
export Polynomial
# Invariant:
# a and x might be empty: meaning it is the zero polynomial
# a does not contain any zeros
# x is increasing in the monomial order (i.e. grlex)
struct Polynomial{C, T} <: AbstractPolynomial{T}
a::Vector{T}
x::MonomialVector{C}
function Polynomial{C, T}(a::Vector{T}, x::MonomialVector{C}) where {C, T}
length(a) == length(x) || throw(ArgumentError("There should be as many coefficient than monomials"))
zeroidx = Int[]
for (i,α) in enumerate(a)
if iszero(α)
push!(zeroidx, i)
end
end
if !isempty(zeroidx)
isnz = ones(Bool, length(a))
isnz[zeroidx] .= false
nzidx = findall(isnz)
a = a[nzidx]
x = x[nzidx]
end
new{C, T}(a, x)
end
end
iscomm(::Type{Polynomial{C, T}}) where {C, T} = C
Base.broadcastable(p::Polynomial) = Ref(p)
Base.copy(p::Polynomial{C, T}) where {C, T} = Polynomial{C, T}(copy(p.a), copy(p.x))
Base.zero(::Type{Polynomial{C, T}}) where {C, T} = Polynomial(T[], MonomialVector{C}())
Base.one(::Type{Polynomial{C, T}}) where {C, T} = Polynomial([one(T)], MonomialVector{C}(PolyVar{C}[], [Int[]]))
Base.zero(p::Polynomial{C, T}) where {C, T} = Polynomial(T[], emptymonovec(_vars(p)))
Base.one(p::Polynomial{C, T}) where {C, T} = Polynomial([one(T)], MonomialVector(_vars(p), [zeros(Int, nvariables(p))]))
Polynomial{C, T}(a::AbstractVector, x::MonomialVector) where {C, T} = Polynomial{C, T}(Vector{T}(a), x)
Polynomial{C, T}(a::AbstractVector, X::DMonoVec) where {C, T} = Polynomial{C, T}(monovec(a, X)...)
Polynomial{C}(a::Vector{T}, x) where {C, T} = Polynomial{C, T}(a, x)
Polynomial(af::Union{Function, Vector}, x::DMonoVec{C}) where {C} = Polynomial{C}(af, x)
# TODO Remove with MP v0.2.8
Polynomial{C, T}(p::Polynomial{C, T}) where {C, T} = p
Base.convert(::Type{Polynomial{C, T}}, p::Polynomial{C, T}) where {C, T} = p
function Base.convert(::Type{Polynomial{C, T}},
p::Polynomial{C, S}) where {C, S, T}
return Polynomial{C}(convert(Vector{T}, p.a), p.x)
end
#function convert(::Type{Polynomial{C, T}},
# p::AbstractPolynomialLike) where {C, T}
# return convert(Polynomial{C, T}, polynomial(p, T))
#end
function Base.convert(::Type{Polynomial{C, T}}, t::Term{C}) where {C, T}
return Polynomial{C, T}(T[t.α], [t.x])
end
function Base.convert(::Type{Polynomial{C, T}}, m::DMonomialLike{C}) where {C, T}
return Polynomial(convert(Term{C, T}, m))
end
function MP.convertconstant(::Type{Polynomial{C, T}}, α) where {C, T}
return Polynomial(convert(Term{C, T}, α))
end
Polynomial{C}(p::Union{Polynomial{C}, Term{C}, Monomial{C}, PolyVar{C}}) where {C} = Polynomial(p)
Polynomial{C}(α) where {C} = Polynomial(Term{C}(α))
Polynomial(p::Polynomial) = p
Polynomial(t::Term{C, T}) where {C, T} = Polynomial{C, T}([t.α], [t.x])
Polynomial(x::Union{PolyVar{C}, Monomial{C}}) where {C} = Polynomial(Term{C}(x))
#Base.convert(::Type{TermContainer{C, T}}, p::Polynomial{C}) where {C, T} = Polynomial{C, T}(p)
function Polynomial{C, T}(f::Function, x::MonomialVector{C}) where {C, T}
a = T[f(i) for i in 1:length(x)]
Polynomial{C, T}(a, x)
end
function Polynomial{C, T}(f::Function, x::AbstractVector) where {C, T}
σ, X = sortmonovec(x)
a = T[f(i) for i in σ]
Polynomial{C, T}(a, X)
end
Polynomial{C}(f::Function, x) where {C} = Polynomial{C, Base.promote_op(f, Int)}(f, x)
#Base.convert(::Type{PolyType{C}}, p::TermContainer{C}) where {C} = p
# needed to build [p Q; Q p] where p is a polynomial and Q is a matpolynomial in Julia v0.5
#Base.convert(::Type{TermType{C}}, p::TermContainer{C}) where {C} = p
#Base.convert(::Type{TermType{C, T}}, p::TermContainer{C, T}) where {C, T} = p
Base.length(p::Polynomial) = length(p.a)
Base.isempty(p::Polynomial) = isempty(p.a)
Base.iterate(p::Polynomial) = isempty(p) ? nothing : (p[1], 1)
function Base.iterate(p::Polynomial, state::Int)
state < length(p) ? (p[state+1], state+1) : nothing
end
#eltype(::Type{Polynomial{C, T}}) where {C, T} = T
Base.getindex(p::Polynomial, I::Int) = Term(p.a[I[1]], p.x[I[1]])
#Base.transpose(p::Polynomial) = Polynomial(map(transpose, p.a), p.x) # FIXME invalid age range update
struct TermIterator{C, T} <: AbstractVector{Term{C, T}}
p::Polynomial{C, T}
end
Base.firstindex(p::TermIterator) = firstindex(p.p.a)
Base.lastindex(p::TermIterator) = lastindex(p.p.a)
Base.length(p::TermIterator) = length(p.p.a)
Base.size(p::TermIterator) = (length(p),)
Base.isempty(p::TermIterator) = isempty(p.p.a)
Base.iterate(p::TermIterator) = isempty(p) ? nothing : (p[1], 1)
function Base.iterate(p::TermIterator, state::Int)
state < length(p) ? (p[state+1], state+1) : nothing
end
Base.getindex(p::TermIterator, I::Int) = Term(p.p.a[I[1]], p.p.x[I[1]])
MP.terms(p::Polynomial) = TermIterator(p)
MP.coefficients(p::Polynomial) = p.a
MP.monomials(p::Polynomial) = p.x
_vars(p::Polynomial) = _vars(p.x)
MP.extdegree(p::Polynomial) = extdegree(p.x)
MP.mindegree(p::Polynomial) = mindegree(p.x)
MP.maxdegree(p::Polynomial) = maxdegree(p.x)
MP.leadingcoefficient(p::Polynomial{C, T}) where {C, T} = iszero(p) ? zero(T) : first(p.a)
MP.leadingmonomial(p::Polynomial) = iszero(p) ? constantmonomial(p) : first(p.x)
MP.leadingterm(p::Polynomial) = iszero(p) ? zeroterm(p) : first(terms(p))
function MP.removeleadingterm(p::Polynomial)
Polynomial(p.a[2:end], p.x[2:end])
end
function MP.removemonomials(p::Polynomial, x::MonomialVector)
# use the fact that monomials are sorted to do this O(n) instead of O(n^2)
j = 1
I = Int[]
for (i,t) in enumerate(p)
while j <= length(x) && x[j] > t.x
j += 1
end
if j > length(x) || x[j] != t.x
push!(I, i)
end
end
Polynomial(p.a[I], p.x[I])
end
MP.removemonomials(p::Polynomial, x::Vector) = removemonomials(p, MonomialVector(x))
function removedups(adup::Vector{T}, Zdup::Vector{Vector{Int}}) where {T}
σ = sortperm(Zdup, rev=true, lt=grlex)
Z = Vector{Vector{Int}}()
a = Vector{T}()
i = 0
j = 1
while j <= length(adup)
k = σ[j]
if j == 1 || Zdup[k] != Zdup[σ[j-1]]
push!(Z, Zdup[k])
push!(a, adup[k])
i += 1
else
a[i] += adup[k]
end
j += 1
end
a, Z
end
function polynomialclean(vars::Vector{PolyVar{C}}, adup::Vector{T}, Zdup::Vector{Vector{Int}}) where {C, T}
a, Z = removedups(adup, Zdup)
Polynomial{C, T}(a, MonomialVector{C}(vars, Z))
end
MP.polynomial(a::AbstractVector, x::DMonoVec, s::MP.ListState) = Polynomial(collect(a), x)
#MP.polynomial(f::Function, x::AbstractVector) = Polynomial(f, x)
#MP.polynomial(ts::AbstractVector{Term{C, T}}) where {C, T} = Polynomial(coefficient.(ts), monomial.(ts)) # FIXME invalid age range update
# i < j
function trimap(i, j, n)
div(n*(n+1), 2) - div((n-i+1)*(n-i+2), 2) + j-i+1
end
MP.polynomial(Q::AbstractMatrix{T}, mv::MonomialVector) where T = MP.polynomial(Q, mv, Base.promote_op(+, T, T))
function MP.polynomial(Q::AbstractMatrix, mv::MonomialVector{C}, ::Type{T}) where {C, T}
if isempty(Q)
zero(Polynomial{C, T})
else
n = length(mv)
if C
N = trimap(n, n, n)
Z = Vector{Vector{Int}}(undef, N)
a = Vector{T}(undef, N)
for i in 1:n
for j in i:n
k = trimap(i, j, n)
Z[k] = mv.Z[i] + mv.Z[j]
if i == j
a[k] = Q[i, j]
else
a[k] = Q[i, j] + Q[j, i]
end
end
end
v = _vars(mv)
else
N = n^2
x = Vector{Monomial{C}}(undef, N)
a = Vector{T}(undef, N)
offset = 0
for i in 1:n
# for j in 1:n wouldn't be cache friendly for Q
for j in i:n
k = trimap(i, j, n)
q = Q[i, j]
x[offset+k] = mv[i] * mv[j]
a[offset+k] = q
if i != j
offset += 1
x[offset+k] = mv[j] * mv[i]
a[offset+k] = q
end
end
end
a, X = monovec(a, x)
v = _vars(X)
Z = X.Z
end
polynomialclean(v, a, Z)
end
end
|