Upload 6 files
Browse files
CAGroup3D.yaml
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
CLASS_NAMES: [ 'cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
|
2 |
+
'bookshelf', 'picture', 'counter', 'desk', 'curtain',
|
3 |
+
'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
|
4 |
+
'garbagebin']
|
5 |
+
|
6 |
+
DATA_CONFIG:
|
7 |
+
_BASE_CONFIG_: cfgs/dataset_configs/scannet_dataset.yaml
|
8 |
+
|
9 |
+
VOXEL_SIZE: &VOXEL_SIZE 0.02
|
10 |
+
N_CLASSES: &N_CLASSES 18
|
11 |
+
SEMANTIC_THR: &SEMANTIC_THR 0.15
|
12 |
+
|
13 |
+
MODEL:
|
14 |
+
NAME: CAGroup3D
|
15 |
+
VOXEL_SIZE: *VOXEL_SIZE
|
16 |
+
SEMANTIC_MIN_THR: 0.05
|
17 |
+
SEMANTIC_ITER_VALUE: 0.02
|
18 |
+
SEMANTIC_THR: *SEMANTIC_THR
|
19 |
+
BACKBONE_3D:
|
20 |
+
NAME: BiResNet
|
21 |
+
IN_CHANNELS: 3
|
22 |
+
OUT_CHANNELS: 64
|
23 |
+
|
24 |
+
DENSE_HEAD:
|
25 |
+
NAME: CAGroup3DHead
|
26 |
+
IN_CHANNELS: [64, 128, 256, 512]
|
27 |
+
OUT_CHANNELS: 64
|
28 |
+
SEMANTIC_THR: *SEMANTIC_THR
|
29 |
+
VOXEL_SIZE: *VOXEL_SIZE
|
30 |
+
N_CLASSES: *N_CLASSES
|
31 |
+
N_REG_OUTS: 6
|
32 |
+
CLS_KERNEL: 9
|
33 |
+
WITH_YAW: False
|
34 |
+
USE_SEM_SCORE: False # if feed sem scores to the second-stage, default: False
|
35 |
+
EXPAND_RATIO: 3
|
36 |
+
ASSIGNER:
|
37 |
+
NAME: CAGroup3DAssigner
|
38 |
+
LIMIT: 27
|
39 |
+
TOPK: 18
|
40 |
+
N_SCALES: 4
|
41 |
+
LOSS_OFFSET:
|
42 |
+
NAME: SmoothL1Loss
|
43 |
+
BETA: 0.04
|
44 |
+
REDUCTION: sum
|
45 |
+
LOSS_WEIGHT: 1.0
|
46 |
+
LOSS_BBOX:
|
47 |
+
NAME: IoU3DLoss
|
48 |
+
WITH_YAW: False
|
49 |
+
LOSS_WEIGHT: 1.0
|
50 |
+
NMS_CONFIG:
|
51 |
+
SCORE_THR: 0.01
|
52 |
+
NMS_PRE: 1000
|
53 |
+
IOU_THR: 0.5
|
54 |
+
|
55 |
+
ROI_HEAD:
|
56 |
+
NAME: CAGroup3DRoIHead
|
57 |
+
NUM_CLASSES: *N_CLASSES
|
58 |
+
MIDDLE_FEATURE_SOURCE: [3]
|
59 |
+
GRID_SIZE: 7
|
60 |
+
VOXEL_SIZE: *VOXEL_SIZE
|
61 |
+
COORD_KEY: 2
|
62 |
+
MLPS: [[64,128,128]]
|
63 |
+
CODE_SIZE: 6
|
64 |
+
ENCODE_SINCOS: False
|
65 |
+
ROI_PER_IMAGE: 128
|
66 |
+
ROI_FG_RATIO: 0.9
|
67 |
+
REG_FG_THRESH: 0.3
|
68 |
+
ROI_CONV_KERNEL: 5
|
69 |
+
ENLARGE_RATIO: False
|
70 |
+
USE_IOU_LOSS: False
|
71 |
+
USE_GRID_OFFSET: False
|
72 |
+
USE_SIMPLE_POOLING: True
|
73 |
+
USE_CENTER_POOLING: True
|
74 |
+
LOSS_WEIGHTS:
|
75 |
+
RCNN_CLS_WEIGHT: 1.0 # no use
|
76 |
+
RCNN_REG_WEIGHT: 1.0 # set to 0.5 if use iou loss
|
77 |
+
RCNN_IOU_WEIGHT: 1.0
|
78 |
+
CODE_WEIGHT: [1., 1., 1., 1., 1., 1.]
|
79 |
+
|
80 |
+
POST_PROCESSING:
|
81 |
+
RECALL_THRESH_LIST: [0.25, 0.5]
|
82 |
+
EVAL_METRIC: scannet
|
83 |
+
|
84 |
+
OPTIMIZATION:
|
85 |
+
BATCH_SIZE_PER_GPU: 16 # 4x4 or 8x2
|
86 |
+
NUM_EPOCHS: 1 #10
|
87 |
+
|
88 |
+
OPTIMIZER: adamW
|
89 |
+
LR: 0.001
|
90 |
+
WEIGHT_DECAY: 0.0001
|
91 |
+
DECAY_STEP_LIST: [7, 9]
|
92 |
+
LR_DECAY: 0.1
|
93 |
+
GRAD_NORM_CLIP: 10
|
94 |
+
|
95 |
+
# no use
|
96 |
+
PCT_START: 0.4
|
97 |
+
DIV_FACTOR: 10
|
98 |
+
LR_CLIP: 0.0000001
|
99 |
+
|
100 |
+
LR_WARMUP: False
|
101 |
+
WARMUP_EPOCH: 1
|
102 |
+
|
103 |
+
|
ckpt/checkpoint_epoch_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9eb4a927db7a3f710094f1e7b30317e7d4e95d6af8ab368946f7919d9455aa3f
|
3 |
+
size 1465028071
|
eval/eval_with_train/eval_list_val.txt
ADDED
File without changes
|
eval/eval_with_train/tensorboard_val/events.out.tfevents.1680187773.DESKTOP-3FL13RB
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:710022cc5badae04a42df2e7816a28f1cb4533dddea6f3b43a9c2d5325fce8e0
|
3 |
+
size 40
|
log_train_20230326-130440.txt
ADDED
@@ -0,0 +1,912 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-03-26 13:04:40,978 INFO **********************Start logging**********************
|
2 |
+
2023-03-26 13:04:40,979 INFO CUDA_VISIBLE_DEVICES=ALL
|
3 |
+
2023-03-26 13:04:40,980 INFO total_batch_size: 16
|
4 |
+
2023-03-26 13:04:40,980 INFO cfg_file cfgs/scannet_models/CAGroup3D.yaml
|
5 |
+
2023-03-26 13:04:40,981 INFO batch_size 16
|
6 |
+
2023-03-26 13:04:40,981 INFO epochs 1
|
7 |
+
2023-03-26 13:04:40,982 INFO workers 4
|
8 |
+
2023-03-26 13:04:40,982 INFO extra_tag cagroup3d-win10-scannet
|
9 |
+
2023-03-26 13:04:40,983 INFO ckpt None
|
10 |
+
2023-03-26 13:04:40,984 INFO pretrained_model None
|
11 |
+
2023-03-26 13:04:40,984 INFO launcher pytorch
|
12 |
+
2023-03-26 13:04:40,985 INFO tcp_port 18888
|
13 |
+
2023-03-26 13:04:40,985 INFO sync_bn False
|
14 |
+
2023-03-26 13:04:40,986 INFO fix_random_seed True
|
15 |
+
2023-03-26 13:04:40,986 INFO ckpt_save_interval 1
|
16 |
+
2023-03-26 13:04:40,987 INFO max_ckpt_save_num 30
|
17 |
+
2023-03-26 13:04:40,987 INFO merge_all_iters_to_one_epoch False
|
18 |
+
2023-03-26 13:04:40,988 INFO set_cfgs None
|
19 |
+
2023-03-26 13:04:40,988 INFO max_waiting_mins 0
|
20 |
+
2023-03-26 13:04:40,989 INFO start_epoch 0
|
21 |
+
2023-03-26 13:04:40,989 INFO num_epochs_to_eval 0
|
22 |
+
2023-03-26 13:04:40,990 INFO save_to_file False
|
23 |
+
2023-03-26 13:04:40,990 INFO cfg.ROOT_DIR: C:\CITYU\CS5182\proj\CAGroup3D
|
24 |
+
2023-03-26 13:04:40,991 INFO cfg.LOCAL_RANK: 0
|
25 |
+
2023-03-26 13:04:40,991 INFO cfg.CLASS_NAMES: ['cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', 'bookshelf', 'picture', 'counter', 'desk', 'curtain', 'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub', 'garbagebin']
|
26 |
+
2023-03-26 13:04:40,992 INFO
|
27 |
+
cfg.DATA_CONFIG = edict()
|
28 |
+
2023-03-26 13:04:40,993 INFO cfg.DATA_CONFIG.DATASET: ScannetDataset
|
29 |
+
2023-03-26 13:04:40,993 INFO cfg.DATA_CONFIG.DATA_PATH: ../data/scannet_data/ScanNetV2
|
30 |
+
2023-03-26 13:04:40,994 INFO cfg.DATA_CONFIG.PROCESSED_DATA_TAG: scannet_processed_data_v0_5_0
|
31 |
+
2023-03-26 13:04:40,994 INFO cfg.DATA_CONFIG.POINT_CLOUD_RANGE: [-40, -40, -10, 40, 40, 10]
|
32 |
+
2023-03-26 13:04:40,995 INFO
|
33 |
+
cfg.DATA_CONFIG.DATA_SPLIT = edict()
|
34 |
+
2023-03-26 13:04:40,995 INFO cfg.DATA_CONFIG.DATA_SPLIT.train: train
|
35 |
+
2023-03-26 13:04:40,996 INFO cfg.DATA_CONFIG.DATA_SPLIT.test: val
|
36 |
+
2023-03-26 13:04:40,996 INFO
|
37 |
+
cfg.DATA_CONFIG.REPEAT = edict()
|
38 |
+
2023-03-26 13:04:40,997 INFO cfg.DATA_CONFIG.REPEAT.train: 10
|
39 |
+
2023-03-26 13:04:40,998 INFO cfg.DATA_CONFIG.REPEAT.test: 1
|
40 |
+
2023-03-26 13:04:40,998 INFO
|
41 |
+
cfg.DATA_CONFIG.INFO_PATH = edict()
|
42 |
+
2023-03-26 13:04:40,999 INFO cfg.DATA_CONFIG.INFO_PATH.train: ['scannet_infos_train.pkl']
|
43 |
+
2023-03-26 13:04:40,999 INFO cfg.DATA_CONFIG.INFO_PATH.test: ['scannet_infos_val.pkl']
|
44 |
+
2023-03-26 13:04:41,000 INFO cfg.DATA_CONFIG.GET_ITEM_LIST: ['points', 'instance_mask', 'semantic_mask']
|
45 |
+
2023-03-26 13:04:41,000 INFO cfg.DATA_CONFIG.FILTER_EMPTY_BOXES_FOR_TRAIN: True
|
46 |
+
2023-03-26 13:04:41,001 INFO
|
47 |
+
cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN = edict()
|
48 |
+
2023-03-26 13:04:41,002 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN.DISABLE_AUG_LIST: ['placeholder']
|
49 |
+
2023-03-26 13:04:41,003 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN.AUG_CONFIG_LIST: [{'NAME': 'global_alignment', 'rotation_axis': 2}, {'NAME': 'point_seg_class_mapping', 'valid_cat_ids': [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39], 'max_cat_id': 40}, {'NAME': 'random_world_flip', 'ALONG_AXIS_LIST': ['x', 'y']}, {'NAME': 'random_world_rotation', 'WORLD_ROT_ANGLE': [-0.087266, 0.087266]}, {'NAME': 'random_world_scaling', 'WORLD_SCALE_RANGE': [0.9, 1.1]}, {'NAME': 'random_world_translation', 'ALONG_AXIS_LIST': ['x', 'y', 'z'], 'NOISE_TRANSLATE_STD': 0.1}]
|
50 |
+
2023-03-26 13:04:41,004 INFO
|
51 |
+
cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST = edict()
|
52 |
+
2023-03-26 13:04:41,004 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST.DISABLE_AUG_LIST: ['placeholder']
|
53 |
+
2023-03-26 13:04:41,005 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST.AUG_CONFIG_LIST: [{'NAME': 'global_alignment', 'rotation_axis': 2}]
|
54 |
+
2023-03-26 13:04:41,005 INFO
|
55 |
+
cfg.DATA_CONFIG.DATA_AUGMENTOR = edict()
|
56 |
+
2023-03-26 13:04:41,006 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR.DISABLE_AUG_LIST: ['placeholder']
|
57 |
+
2023-03-26 13:04:41,007 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR.AUG_CONFIG_LIST: [{'NAME': 'global_alignment', 'rotation_axis': 2}]
|
58 |
+
2023-03-26 13:04:41,008 INFO
|
59 |
+
cfg.DATA_CONFIG.POINT_FEATURE_ENCODING = edict()
|
60 |
+
2023-03-26 13:04:41,008 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.encoding_type: absolute_coordinates_encoding
|
61 |
+
2023-03-26 13:04:41,009 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.used_feature_list: ['x', 'y', 'z', 'r', 'g', 'b']
|
62 |
+
2023-03-26 13:04:41,009 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.src_feature_list: ['x', 'y', 'z', 'r', 'g', 'b']
|
63 |
+
2023-03-26 13:04:41,010 INFO cfg.DATA_CONFIG.DATA_PROCESSOR: [{'NAME': 'mask_points_and_boxes_outside_range', 'REMOVE_OUTSIDE_BOXES': True}]
|
64 |
+
2023-03-26 13:04:41,010 INFO cfg.DATA_CONFIG._BASE_CONFIG_: cfgs/dataset_configs/scannet_dataset.yaml
|
65 |
+
2023-03-26 13:04:41,011 INFO cfg.VOXEL_SIZE: 0.02
|
66 |
+
2023-03-26 13:04:41,011 INFO cfg.N_CLASSES: 18
|
67 |
+
2023-03-26 13:04:41,012 INFO cfg.SEMANTIC_THR: 0.15
|
68 |
+
2023-03-26 13:04:41,012 INFO
|
69 |
+
cfg.MODEL = edict()
|
70 |
+
2023-03-26 13:04:41,013 INFO cfg.MODEL.NAME: CAGroup3D
|
71 |
+
2023-03-26 13:04:41,013 INFO cfg.MODEL.VOXEL_SIZE: 0.02
|
72 |
+
2023-03-26 13:04:41,013 INFO cfg.MODEL.SEMANTIC_MIN_THR: 0.05
|
73 |
+
2023-03-26 13:04:41,014 INFO cfg.MODEL.SEMANTIC_ITER_VALUE: 0.02
|
74 |
+
2023-03-26 13:04:41,014 INFO cfg.MODEL.SEMANTIC_THR: 0.15
|
75 |
+
2023-03-26 13:04:41,015 INFO
|
76 |
+
cfg.MODEL.BACKBONE_3D = edict()
|
77 |
+
2023-03-26 13:04:41,015 INFO cfg.MODEL.BACKBONE_3D.NAME: BiResNet
|
78 |
+
2023-03-26 13:04:41,016 INFO cfg.MODEL.BACKBONE_3D.IN_CHANNELS: 3
|
79 |
+
2023-03-26 13:04:41,016 INFO cfg.MODEL.BACKBONE_3D.OUT_CHANNELS: 64
|
80 |
+
2023-03-26 13:04:41,017 INFO
|
81 |
+
cfg.MODEL.DENSE_HEAD = edict()
|
82 |
+
2023-03-26 13:04:41,017 INFO cfg.MODEL.DENSE_HEAD.NAME: CAGroup3DHead
|
83 |
+
2023-03-26 13:04:41,018 INFO cfg.MODEL.DENSE_HEAD.IN_CHANNELS: [64, 128, 256, 512]
|
84 |
+
2023-03-26 13:04:41,018 INFO cfg.MODEL.DENSE_HEAD.OUT_CHANNELS: 64
|
85 |
+
2023-03-26 13:04:41,019 INFO cfg.MODEL.DENSE_HEAD.SEMANTIC_THR: 0.15
|
86 |
+
2023-03-26 13:04:41,019 INFO cfg.MODEL.DENSE_HEAD.VOXEL_SIZE: 0.02
|
87 |
+
2023-03-26 13:04:41,020 INFO cfg.MODEL.DENSE_HEAD.N_CLASSES: 18
|
88 |
+
2023-03-26 13:04:41,020 INFO cfg.MODEL.DENSE_HEAD.N_REG_OUTS: 6
|
89 |
+
2023-03-26 13:04:41,021 INFO cfg.MODEL.DENSE_HEAD.CLS_KERNEL: 9
|
90 |
+
2023-03-26 13:04:41,021 INFO cfg.MODEL.DENSE_HEAD.WITH_YAW: False
|
91 |
+
2023-03-26 13:04:41,022 INFO cfg.MODEL.DENSE_HEAD.USE_SEM_SCORE: False
|
92 |
+
2023-03-26 13:04:41,022 INFO cfg.MODEL.DENSE_HEAD.EXPAND_RATIO: 3
|
93 |
+
2023-03-26 13:04:41,022 INFO
|
94 |
+
cfg.MODEL.DENSE_HEAD.ASSIGNER = edict()
|
95 |
+
2023-03-26 13:04:41,023 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER.NAME: CAGroup3DAssigner
|
96 |
+
2023-03-26 13:04:41,023 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER.LIMIT: 27
|
97 |
+
2023-03-26 13:04:41,024 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER.TOPK: 18
|
98 |
+
2023-03-26 13:04:41,024 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER.N_SCALES: 4
|
99 |
+
2023-03-26 13:04:41,025 INFO
|
100 |
+
cfg.MODEL.DENSE_HEAD.LOSS_OFFSET = edict()
|
101 |
+
2023-03-26 13:04:41,025 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.NAME: SmoothL1Loss
|
102 |
+
2023-03-26 13:04:41,026 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.BETA: 0.04
|
103 |
+
2023-03-26 13:04:41,026 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.REDUCTION: sum
|
104 |
+
2023-03-26 13:04:41,027 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.LOSS_WEIGHT: 1.0
|
105 |
+
2023-03-26 13:04:41,027 INFO
|
106 |
+
cfg.MODEL.DENSE_HEAD.LOSS_BBOX = edict()
|
107 |
+
2023-03-26 13:04:41,028 INFO cfg.MODEL.DENSE_HEAD.LOSS_BBOX.NAME: IoU3DLoss
|
108 |
+
2023-03-26 13:04:41,028 INFO cfg.MODEL.DENSE_HEAD.LOSS_BBOX.WITH_YAW: False
|
109 |
+
2023-03-26 13:04:41,028 INFO cfg.MODEL.DENSE_HEAD.LOSS_BBOX.LOSS_WEIGHT: 1.0
|
110 |
+
2023-03-26 13:04:41,029 INFO
|
111 |
+
cfg.MODEL.DENSE_HEAD.NMS_CONFIG = edict()
|
112 |
+
2023-03-26 13:04:41,029 INFO cfg.MODEL.DENSE_HEAD.NMS_CONFIG.SCORE_THR: 0.01
|
113 |
+
2023-03-26 13:04:41,030 INFO cfg.MODEL.DENSE_HEAD.NMS_CONFIG.NMS_PRE: 1000
|
114 |
+
2023-03-26 13:04:41,030 INFO cfg.MODEL.DENSE_HEAD.NMS_CONFIG.IOU_THR: 0.5
|
115 |
+
2023-03-26 13:04:41,031 INFO
|
116 |
+
cfg.MODEL.ROI_HEAD = edict()
|
117 |
+
2023-03-26 13:04:41,031 INFO cfg.MODEL.ROI_HEAD.NAME: CAGroup3DRoIHead
|
118 |
+
2023-03-26 13:04:41,032 INFO cfg.MODEL.ROI_HEAD.NUM_CLASSES: 18
|
119 |
+
2023-03-26 13:04:41,032 INFO cfg.MODEL.ROI_HEAD.MIDDLE_FEATURE_SOURCE: [3]
|
120 |
+
2023-03-26 13:04:41,033 INFO cfg.MODEL.ROI_HEAD.GRID_SIZE: 7
|
121 |
+
2023-03-26 13:04:41,033 INFO cfg.MODEL.ROI_HEAD.VOXEL_SIZE: 0.02
|
122 |
+
2023-03-26 13:04:41,034 INFO cfg.MODEL.ROI_HEAD.COORD_KEY: 2
|
123 |
+
2023-03-26 13:04:41,034 INFO cfg.MODEL.ROI_HEAD.MLPS: [[64, 128, 128]]
|
124 |
+
2023-03-26 13:04:41,035 INFO cfg.MODEL.ROI_HEAD.CODE_SIZE: 6
|
125 |
+
2023-03-26 13:04:41,035 INFO cfg.MODEL.ROI_HEAD.ENCODE_SINCOS: False
|
126 |
+
2023-03-26 13:04:41,036 INFO cfg.MODEL.ROI_HEAD.ROI_PER_IMAGE: 128
|
127 |
+
2023-03-26 13:04:41,036 INFO cfg.MODEL.ROI_HEAD.ROI_FG_RATIO: 0.9
|
128 |
+
2023-03-26 13:04:41,036 INFO cfg.MODEL.ROI_HEAD.REG_FG_THRESH: 0.3
|
129 |
+
2023-03-26 13:04:41,037 INFO cfg.MODEL.ROI_HEAD.ROI_CONV_KERNEL: 5
|
130 |
+
2023-03-26 13:04:41,037 INFO cfg.MODEL.ROI_HEAD.ENLARGE_RATIO: False
|
131 |
+
2023-03-26 13:04:41,038 INFO cfg.MODEL.ROI_HEAD.USE_IOU_LOSS: False
|
132 |
+
2023-03-26 13:04:41,038 INFO cfg.MODEL.ROI_HEAD.USE_GRID_OFFSET: False
|
133 |
+
2023-03-26 13:04:41,039 INFO cfg.MODEL.ROI_HEAD.USE_SIMPLE_POOLING: True
|
134 |
+
2023-03-26 13:04:41,039 INFO cfg.MODEL.ROI_HEAD.USE_CENTER_POOLING: True
|
135 |
+
2023-03-26 13:04:41,039 INFO
|
136 |
+
cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS = edict()
|
137 |
+
2023-03-26 13:04:41,040 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_CLS_WEIGHT: 1.0
|
138 |
+
2023-03-26 13:04:41,040 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_REG_WEIGHT: 1.0
|
139 |
+
2023-03-26 13:04:41,041 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_IOU_WEIGHT: 1.0
|
140 |
+
2023-03-26 13:04:41,041 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.CODE_WEIGHT: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
|
141 |
+
2023-03-26 13:04:41,042 INFO
|
142 |
+
cfg.MODEL.POST_PROCESSING = edict()
|
143 |
+
2023-03-26 13:04:41,042 INFO cfg.MODEL.POST_PROCESSING.RECALL_THRESH_LIST: [0.25, 0.5]
|
144 |
+
2023-03-26 13:04:41,043 INFO cfg.MODEL.POST_PROCESSING.EVAL_METRIC: scannet
|
145 |
+
2023-03-26 13:04:41,043 INFO
|
146 |
+
cfg.OPTIMIZATION = edict()
|
147 |
+
2023-03-26 13:04:41,044 INFO cfg.OPTIMIZATION.BATCH_SIZE_PER_GPU: 16
|
148 |
+
2023-03-26 13:04:41,044 INFO cfg.OPTIMIZATION.NUM_EPOCHS: 1
|
149 |
+
2023-03-26 13:04:41,044 INFO cfg.OPTIMIZATION.OPTIMIZER: adamW
|
150 |
+
2023-03-26 13:04:41,045 INFO cfg.OPTIMIZATION.LR: 0.001
|
151 |
+
2023-03-26 13:04:41,045 INFO cfg.OPTIMIZATION.WEIGHT_DECAY: 0.0001
|
152 |
+
2023-03-26 13:04:41,046 INFO cfg.OPTIMIZATION.DECAY_STEP_LIST: [7, 9]
|
153 |
+
2023-03-26 13:04:41,046 INFO cfg.OPTIMIZATION.LR_DECAY: 0.1
|
154 |
+
2023-03-26 13:04:41,046 INFO cfg.OPTIMIZATION.GRAD_NORM_CLIP: 10
|
155 |
+
2023-03-26 13:04:41,047 INFO cfg.OPTIMIZATION.PCT_START: 0.4
|
156 |
+
2023-03-26 13:04:41,047 INFO cfg.OPTIMIZATION.DIV_FACTOR: 10
|
157 |
+
2023-03-26 13:04:41,048 INFO cfg.OPTIMIZATION.LR_CLIP: 1e-07
|
158 |
+
2023-03-26 13:04:41,048 INFO cfg.OPTIMIZATION.LR_WARMUP: False
|
159 |
+
2023-03-26 13:04:41,049 INFO cfg.OPTIMIZATION.WARMUP_EPOCH: 1
|
160 |
+
2023-03-26 13:04:41,049 INFO cfg.TAG: CAGroup3D
|
161 |
+
2023-03-26 13:04:41,049 INFO cfg.EXP_GROUP_PATH: scannet_models
|
162 |
+
2023-03-26 13:04:41,085 INFO Loading SCANNET dataset
|
163 |
+
2023-03-26 13:04:41,192 INFO Total samples for SCANNET dataset: 1201
|
164 |
+
2023-03-26 13:04:44,269 INFO DistributedDataParallel(
|
165 |
+
(module): CAGroup3D(
|
166 |
+
(vfe): None
|
167 |
+
(backbone_3d): BiResNet(
|
168 |
+
(conv1): Sequential(
|
169 |
+
(0): MinkowskiConvolution(in=3, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
170 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
171 |
+
(2): MinkowskiReLU()
|
172 |
+
(3): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
173 |
+
(4): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
174 |
+
(5): MinkowskiReLU()
|
175 |
+
)
|
176 |
+
(relu): MinkowskiReLU()
|
177 |
+
(layer1): Sequential(
|
178 |
+
(0): BasicBlock(
|
179 |
+
(conv1): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
|
180 |
+
(norm1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
181 |
+
(conv2): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
182 |
+
(norm2): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
183 |
+
(relu): MinkowskiReLU()
|
184 |
+
(downsample): Sequential(
|
185 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1])
|
186 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
187 |
+
)
|
188 |
+
)
|
189 |
+
(1): BasicBlock(
|
190 |
+
(conv1): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
191 |
+
(norm1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
192 |
+
(conv2): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
193 |
+
(norm2): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
194 |
+
(relu): MinkowskiReLU()
|
195 |
+
)
|
196 |
+
)
|
197 |
+
(layer2): Sequential(
|
198 |
+
(0): BasicBlock(
|
199 |
+
(conv1): MinkowskiConvolution(in=64, out=128, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
|
200 |
+
(norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
201 |
+
(conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
202 |
+
(norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
203 |
+
(relu): MinkowskiReLU()
|
204 |
+
(downsample): Sequential(
|
205 |
+
(0): MinkowskiConvolution(in=64, out=128, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1])
|
206 |
+
(1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
207 |
+
)
|
208 |
+
)
|
209 |
+
(1): BasicBlock(
|
210 |
+
(conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
211 |
+
(norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
212 |
+
(conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
213 |
+
(norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
214 |
+
(relu): MinkowskiReLU()
|
215 |
+
)
|
216 |
+
)
|
217 |
+
(layer3): Sequential(
|
218 |
+
(0): BasicBlock(
|
219 |
+
(conv1): MinkowskiConvolution(in=128, out=256, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
|
220 |
+
(norm1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
221 |
+
(conv2): MinkowskiConvolution(in=256, out=256, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
222 |
+
(norm2): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
223 |
+
(relu): MinkowskiReLU()
|
224 |
+
(downsample): Sequential(
|
225 |
+
(0): MinkowskiConvolution(in=128, out=256, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1])
|
226 |
+
(1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
227 |
+
)
|
228 |
+
)
|
229 |
+
(1): BasicBlock(
|
230 |
+
(conv1): MinkowskiConvolution(in=256, out=256, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
231 |
+
(norm1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
232 |
+
(conv2): MinkowskiConvolution(in=256, out=256, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
233 |
+
(norm2): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
234 |
+
(relu): MinkowskiReLU()
|
235 |
+
)
|
236 |
+
)
|
237 |
+
(layer4): Sequential(
|
238 |
+
(0): BasicBlock(
|
239 |
+
(conv1): MinkowskiConvolution(in=256, out=512, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
|
240 |
+
(norm1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
241 |
+
(conv2): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
242 |
+
(norm2): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
243 |
+
(relu): MinkowskiReLU()
|
244 |
+
(downsample): Sequential(
|
245 |
+
(0): MinkowskiConvolution(in=256, out=512, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1])
|
246 |
+
(1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
247 |
+
)
|
248 |
+
)
|
249 |
+
(1): BasicBlock(
|
250 |
+
(conv1): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
251 |
+
(norm1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
252 |
+
(conv2): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
253 |
+
(norm2): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
254 |
+
(relu): MinkowskiReLU()
|
255 |
+
)
|
256 |
+
)
|
257 |
+
(compression3): Sequential(
|
258 |
+
(0): MinkowskiConvolution(in=256, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
259 |
+
(1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
260 |
+
)
|
261 |
+
(compression4): Sequential(
|
262 |
+
(0): MinkowskiConvolution(in=512, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
263 |
+
(1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
264 |
+
)
|
265 |
+
(down3): Sequential(
|
266 |
+
(0): MinkowskiConvolution(in=128, out=256, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
|
267 |
+
(1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
268 |
+
)
|
269 |
+
(down4): Sequential(
|
270 |
+
(0): MinkowskiConvolution(in=128, out=256, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
|
271 |
+
(1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
272 |
+
(2): MinkowskiReLU()
|
273 |
+
(3): MinkowskiConvolution(in=256, out=512, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
|
274 |
+
(4): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
275 |
+
)
|
276 |
+
(layer3_): Sequential(
|
277 |
+
(0): BasicBlock(
|
278 |
+
(conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
279 |
+
(norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
280 |
+
(conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
281 |
+
(norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
282 |
+
(relu): MinkowskiReLU()
|
283 |
+
)
|
284 |
+
(1): BasicBlock(
|
285 |
+
(conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
286 |
+
(norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
287 |
+
(conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
288 |
+
(norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
289 |
+
(relu): MinkowskiReLU()
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(layer4_): Sequential(
|
293 |
+
(0): BasicBlock(
|
294 |
+
(conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
295 |
+
(norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
296 |
+
(conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
297 |
+
(norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
298 |
+
(relu): MinkowskiReLU()
|
299 |
+
)
|
300 |
+
(1): BasicBlock(
|
301 |
+
(conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
302 |
+
(norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
303 |
+
(conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
304 |
+
(norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
305 |
+
(relu): MinkowskiReLU()
|
306 |
+
)
|
307 |
+
)
|
308 |
+
(layer5_): Sequential(
|
309 |
+
(0): Bottleneck(
|
310 |
+
(conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
311 |
+
(norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
312 |
+
(conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
313 |
+
(norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
314 |
+
(conv3): MinkowskiConvolution(in=128, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
315 |
+
(norm3): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
316 |
+
(relu): MinkowskiReLU()
|
317 |
+
(downsample): Sequential(
|
318 |
+
(0): MinkowskiConvolution(in=128, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
319 |
+
(1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
320 |
+
)
|
321 |
+
)
|
322 |
+
)
|
323 |
+
(layer5): Sequential(
|
324 |
+
(0): Bottleneck(
|
325 |
+
(conv1): MinkowskiConvolution(in=512, out=512, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
326 |
+
(norm1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
327 |
+
(conv2): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
|
328 |
+
(norm2): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
329 |
+
(conv3): MinkowskiConvolution(in=512, out=1024, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
330 |
+
(norm3): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
331 |
+
(relu): MinkowskiReLU()
|
332 |
+
(downsample): Sequential(
|
333 |
+
(0): MinkowskiConvolution(in=512, out=1024, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1])
|
334 |
+
(1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
335 |
+
)
|
336 |
+
)
|
337 |
+
)
|
338 |
+
(spp): DAPPM(
|
339 |
+
(scale1): Sequential(
|
340 |
+
(0): MinkowskiAvgPooling(kernel_size=[5, 5, 5], stride=[2, 2, 2], dilation=[1, 1, 1])
|
341 |
+
(1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
342 |
+
(2): MinkowskiReLU()
|
343 |
+
(3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
344 |
+
)
|
345 |
+
(scale2): Sequential(
|
346 |
+
(0): MinkowskiAvgPooling(kernel_size=[9, 9, 9], stride=[4, 4, 4], dilation=[1, 1, 1])
|
347 |
+
(1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
348 |
+
(2): MinkowskiReLU()
|
349 |
+
(3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
350 |
+
)
|
351 |
+
(scale3): Sequential(
|
352 |
+
(0): MinkowskiAvgPooling(kernel_size=[17, 17, 17], stride=[8, 8, 8], dilation=[1, 1, 1])
|
353 |
+
(1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
354 |
+
(2): MinkowskiReLU()
|
355 |
+
(3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
356 |
+
)
|
357 |
+
(scale4): Sequential(
|
358 |
+
(0): MinkowskiAvgPooling(kernel_size=[33, 33, 33], stride=[16, 16, 16], dilation=[1, 1, 1])
|
359 |
+
(1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
360 |
+
(2): MinkowskiReLU()
|
361 |
+
(3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
362 |
+
)
|
363 |
+
(scale0): Sequential(
|
364 |
+
(0): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
365 |
+
(1): MinkowskiReLU()
|
366 |
+
(2): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
367 |
+
)
|
368 |
+
(process1): Sequential(
|
369 |
+
(0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
370 |
+
(1): MinkowskiReLU()
|
371 |
+
(2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
372 |
+
)
|
373 |
+
(process2): Sequential(
|
374 |
+
(0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
375 |
+
(1): MinkowskiReLU()
|
376 |
+
(2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
377 |
+
)
|
378 |
+
(process3): Sequential(
|
379 |
+
(0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
380 |
+
(1): MinkowskiReLU()
|
381 |
+
(2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
382 |
+
)
|
383 |
+
(process4): Sequential(
|
384 |
+
(0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
385 |
+
(1): MinkowskiReLU()
|
386 |
+
(2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
387 |
+
)
|
388 |
+
(compression): Sequential(
|
389 |
+
(0): MinkowskiBatchNorm(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
390 |
+
(1): MinkowskiReLU()
|
391 |
+
(2): MinkowskiConvolution(in=640, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
392 |
+
)
|
393 |
+
(shortcut): Sequential(
|
394 |
+
(0): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
395 |
+
(1): MinkowskiReLU()
|
396 |
+
(2): MinkowskiConvolution(in=1024, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
397 |
+
)
|
398 |
+
)
|
399 |
+
(out): Sequential(
|
400 |
+
(0): MinkowskiConvolutionTranspose(in=256, out=256, kernel_size=[2, 2, 2], stride=[2, 2, 2], dilation=[1, 1, 1])
|
401 |
+
(1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
402 |
+
(2): MinkowskiReLU()
|
403 |
+
(3): MinkowskiConvolution(in=256, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
404 |
+
(4): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
405 |
+
(5): MinkowskiReLU()
|
406 |
+
)
|
407 |
+
)
|
408 |
+
(map_to_bev_module): None
|
409 |
+
(pfe): None
|
410 |
+
(backbone_2d): None
|
411 |
+
(dense_head): CAGroup3DHead(
|
412 |
+
(loss_centerness): CrossEntropy()
|
413 |
+
(loss_bbox): IoU3DLoss()
|
414 |
+
(loss_cls): FocalLoss()
|
415 |
+
(loss_sem): FocalLoss()
|
416 |
+
(loss_offset): SmoothL1Loss()
|
417 |
+
(offset_block): Sequential(
|
418 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
419 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
420 |
+
(2): MinkowskiELU()
|
421 |
+
(3): MinkowskiConvolution(in=64, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
422 |
+
(4): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
423 |
+
(5): MinkowskiELU()
|
424 |
+
(6): MinkowskiConvolution(in=64, out=3, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
425 |
+
)
|
426 |
+
(feature_offset): Sequential(
|
427 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
428 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
429 |
+
(2): MinkowskiELU()
|
430 |
+
)
|
431 |
+
(semantic_conv): MinkowskiConvolution(in=64, out=18, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
432 |
+
(centerness_conv): MinkowskiConvolution(in=64, out=1, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
433 |
+
(reg_conv): MinkowskiConvolution(in=64, out=6, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
434 |
+
(cls_conv): MinkowskiConvolution(in=64, out=18, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
435 |
+
(scales): ModuleList(
|
436 |
+
(0): Scale()
|
437 |
+
(1): Scale()
|
438 |
+
(2): Scale()
|
439 |
+
(3): Scale()
|
440 |
+
(4): Scale()
|
441 |
+
(5): Scale()
|
442 |
+
(6): Scale()
|
443 |
+
(7): Scale()
|
444 |
+
(8): Scale()
|
445 |
+
(9): Scale()
|
446 |
+
(10): Scale()
|
447 |
+
(11): Scale()
|
448 |
+
(12): Scale()
|
449 |
+
(13): Scale()
|
450 |
+
(14): Scale()
|
451 |
+
(15): Scale()
|
452 |
+
(16): Scale()
|
453 |
+
(17): Scale()
|
454 |
+
)
|
455 |
+
(cls_individual_out): ModuleList(
|
456 |
+
(0): Sequential(
|
457 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
458 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
459 |
+
(2): MinkowskiELU()
|
460 |
+
)
|
461 |
+
(1): Sequential(
|
462 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
463 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
464 |
+
(2): MinkowskiELU()
|
465 |
+
)
|
466 |
+
(2): Sequential(
|
467 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
468 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
469 |
+
(2): MinkowskiELU()
|
470 |
+
)
|
471 |
+
(3): Sequential(
|
472 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
473 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
474 |
+
(2): MinkowskiELU()
|
475 |
+
)
|
476 |
+
(4): Sequential(
|
477 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
478 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
479 |
+
(2): MinkowskiELU()
|
480 |
+
)
|
481 |
+
(5): Sequential(
|
482 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
483 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
484 |
+
(2): MinkowskiELU()
|
485 |
+
)
|
486 |
+
(6): Sequential(
|
487 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
488 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
489 |
+
(2): MinkowskiELU()
|
490 |
+
)
|
491 |
+
(7): Sequential(
|
492 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
493 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
494 |
+
(2): MinkowskiELU()
|
495 |
+
)
|
496 |
+
(8): Sequential(
|
497 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
498 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
499 |
+
(2): MinkowskiELU()
|
500 |
+
)
|
501 |
+
(9): Sequential(
|
502 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
503 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
504 |
+
(2): MinkowskiELU()
|
505 |
+
)
|
506 |
+
(10): Sequential(
|
507 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
508 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
509 |
+
(2): MinkowskiELU()
|
510 |
+
)
|
511 |
+
(11): Sequential(
|
512 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
513 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
514 |
+
(2): MinkowskiELU()
|
515 |
+
)
|
516 |
+
(12): Sequential(
|
517 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
518 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
519 |
+
(2): MinkowskiELU()
|
520 |
+
)
|
521 |
+
(13): Sequential(
|
522 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
523 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
524 |
+
(2): MinkowskiELU()
|
525 |
+
)
|
526 |
+
(14): Sequential(
|
527 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
528 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
529 |
+
(2): MinkowskiELU()
|
530 |
+
)
|
531 |
+
(15): Sequential(
|
532 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
533 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
534 |
+
(2): MinkowskiELU()
|
535 |
+
)
|
536 |
+
(16): Sequential(
|
537 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
538 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
539 |
+
(2): MinkowskiELU()
|
540 |
+
)
|
541 |
+
(17): Sequential(
|
542 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
543 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
544 |
+
(2): MinkowskiELU()
|
545 |
+
)
|
546 |
+
)
|
547 |
+
(cls_individual_up): ModuleList(
|
548 |
+
(0): ModuleList(
|
549 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
550 |
+
(1): Sequential(
|
551 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
552 |
+
(1): MinkowskiELU()
|
553 |
+
)
|
554 |
+
)
|
555 |
+
(1): ModuleList(
|
556 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
557 |
+
(1): Sequential(
|
558 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
559 |
+
(1): MinkowskiELU()
|
560 |
+
)
|
561 |
+
)
|
562 |
+
(2): ModuleList(
|
563 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
564 |
+
(1): Sequential(
|
565 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
566 |
+
(1): MinkowskiELU()
|
567 |
+
)
|
568 |
+
)
|
569 |
+
(3): ModuleList(
|
570 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
571 |
+
(1): Sequential(
|
572 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
573 |
+
(1): MinkowskiELU()
|
574 |
+
)
|
575 |
+
)
|
576 |
+
(4): ModuleList(
|
577 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
578 |
+
(1): Sequential(
|
579 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
580 |
+
(1): MinkowskiELU()
|
581 |
+
)
|
582 |
+
)
|
583 |
+
(5): ModuleList(
|
584 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
585 |
+
(1): Sequential(
|
586 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
587 |
+
(1): MinkowskiELU()
|
588 |
+
)
|
589 |
+
)
|
590 |
+
(6): ModuleList(
|
591 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
592 |
+
(1): Sequential(
|
593 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
594 |
+
(1): MinkowskiELU()
|
595 |
+
)
|
596 |
+
)
|
597 |
+
(7): ModuleList(
|
598 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
599 |
+
(1): Sequential(
|
600 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
601 |
+
(1): MinkowskiELU()
|
602 |
+
)
|
603 |
+
)
|
604 |
+
(8): ModuleList(
|
605 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
606 |
+
(1): Sequential(
|
607 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
608 |
+
(1): MinkowskiELU()
|
609 |
+
)
|
610 |
+
)
|
611 |
+
(9): ModuleList(
|
612 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
613 |
+
(1): Sequential(
|
614 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
615 |
+
(1): MinkowskiELU()
|
616 |
+
)
|
617 |
+
)
|
618 |
+
(10): ModuleList(
|
619 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
620 |
+
(1): Sequential(
|
621 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
622 |
+
(1): MinkowskiELU()
|
623 |
+
)
|
624 |
+
)
|
625 |
+
(11): ModuleList(
|
626 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
627 |
+
(1): Sequential(
|
628 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
629 |
+
(1): MinkowskiELU()
|
630 |
+
)
|
631 |
+
)
|
632 |
+
(12): ModuleList(
|
633 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
634 |
+
(1): Sequential(
|
635 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
636 |
+
(1): MinkowskiELU()
|
637 |
+
)
|
638 |
+
)
|
639 |
+
(13): ModuleList(
|
640 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
641 |
+
(1): Sequential(
|
642 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
643 |
+
(1): MinkowskiELU()
|
644 |
+
)
|
645 |
+
)
|
646 |
+
(14): ModuleList(
|
647 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
648 |
+
(1): Sequential(
|
649 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
650 |
+
(1): MinkowskiELU()
|
651 |
+
)
|
652 |
+
)
|
653 |
+
(15): ModuleList(
|
654 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
655 |
+
(1): Sequential(
|
656 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
657 |
+
(1): MinkowskiELU()
|
658 |
+
)
|
659 |
+
)
|
660 |
+
(16): ModuleList(
|
661 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
662 |
+
(1): Sequential(
|
663 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
664 |
+
(1): MinkowskiELU()
|
665 |
+
)
|
666 |
+
)
|
667 |
+
(17): ModuleList(
|
668 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
669 |
+
(1): Sequential(
|
670 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
671 |
+
(1): MinkowskiELU()
|
672 |
+
)
|
673 |
+
)
|
674 |
+
)
|
675 |
+
(cls_individual_fuse): ModuleList(
|
676 |
+
(0): Sequential(
|
677 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
678 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
679 |
+
(2): MinkowskiELU()
|
680 |
+
)
|
681 |
+
(1): Sequential(
|
682 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
683 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
684 |
+
(2): MinkowskiELU()
|
685 |
+
)
|
686 |
+
(2): Sequential(
|
687 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
688 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
689 |
+
(2): MinkowskiELU()
|
690 |
+
)
|
691 |
+
(3): Sequential(
|
692 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
693 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
694 |
+
(2): MinkowskiELU()
|
695 |
+
)
|
696 |
+
(4): Sequential(
|
697 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
698 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
699 |
+
(2): MinkowskiELU()
|
700 |
+
)
|
701 |
+
(5): Sequential(
|
702 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
703 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
704 |
+
(2): MinkowskiELU()
|
705 |
+
)
|
706 |
+
(6): Sequential(
|
707 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
708 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
709 |
+
(2): MinkowskiELU()
|
710 |
+
)
|
711 |
+
(7): Sequential(
|
712 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
713 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
714 |
+
(2): MinkowskiELU()
|
715 |
+
)
|
716 |
+
(8): Sequential(
|
717 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
718 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
719 |
+
(2): MinkowskiELU()
|
720 |
+
)
|
721 |
+
(9): Sequential(
|
722 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
723 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
724 |
+
(2): MinkowskiELU()
|
725 |
+
)
|
726 |
+
(10): Sequential(
|
727 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
728 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
729 |
+
(2): MinkowskiELU()
|
730 |
+
)
|
731 |
+
(11): Sequential(
|
732 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
733 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
734 |
+
(2): MinkowskiELU()
|
735 |
+
)
|
736 |
+
(12): Sequential(
|
737 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
738 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
739 |
+
(2): MinkowskiELU()
|
740 |
+
)
|
741 |
+
(13): Sequential(
|
742 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
743 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
744 |
+
(2): MinkowskiELU()
|
745 |
+
)
|
746 |
+
(14): Sequential(
|
747 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
748 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
749 |
+
(2): MinkowskiELU()
|
750 |
+
)
|
751 |
+
(15): Sequential(
|
752 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
753 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
754 |
+
(2): MinkowskiELU()
|
755 |
+
)
|
756 |
+
(16): Sequential(
|
757 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
758 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
759 |
+
(2): MinkowskiELU()
|
760 |
+
)
|
761 |
+
(17): Sequential(
|
762 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
763 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
764 |
+
(2): MinkowskiELU()
|
765 |
+
)
|
766 |
+
)
|
767 |
+
(cls_individual_expand_out): ModuleList(
|
768 |
+
(0): Sequential(
|
769 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
770 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
771 |
+
(2): MinkowskiELU()
|
772 |
+
)
|
773 |
+
(1): Sequential(
|
774 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
775 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
776 |
+
(2): MinkowskiELU()
|
777 |
+
)
|
778 |
+
(2): Sequential(
|
779 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
780 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
781 |
+
(2): MinkowskiELU()
|
782 |
+
)
|
783 |
+
(3): Sequential(
|
784 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
785 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
786 |
+
(2): MinkowskiELU()
|
787 |
+
)
|
788 |
+
(4): Sequential(
|
789 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
790 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
791 |
+
(2): MinkowskiELU()
|
792 |
+
)
|
793 |
+
(5): Sequential(
|
794 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
795 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
796 |
+
(2): MinkowskiELU()
|
797 |
+
)
|
798 |
+
(6): Sequential(
|
799 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
800 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
801 |
+
(2): MinkowskiELU()
|
802 |
+
)
|
803 |
+
(7): Sequential(
|
804 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
805 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
806 |
+
(2): MinkowskiELU()
|
807 |
+
)
|
808 |
+
(8): Sequential(
|
809 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
810 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
811 |
+
(2): MinkowskiELU()
|
812 |
+
)
|
813 |
+
(9): Sequential(
|
814 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
815 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
816 |
+
(2): MinkowskiELU()
|
817 |
+
)
|
818 |
+
(10): Sequential(
|
819 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
820 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
821 |
+
(2): MinkowskiELU()
|
822 |
+
)
|
823 |
+
(11): Sequential(
|
824 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
825 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
826 |
+
(2): MinkowskiELU()
|
827 |
+
)
|
828 |
+
(12): Sequential(
|
829 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
830 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
831 |
+
(2): MinkowskiELU()
|
832 |
+
)
|
833 |
+
(13): Sequential(
|
834 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
835 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
836 |
+
(2): MinkowskiELU()
|
837 |
+
)
|
838 |
+
(14): Sequential(
|
839 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
840 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
841 |
+
(2): MinkowskiELU()
|
842 |
+
)
|
843 |
+
(15): Sequential(
|
844 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
845 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
846 |
+
(2): MinkowskiELU()
|
847 |
+
)
|
848 |
+
(16): Sequential(
|
849 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
850 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
851 |
+
(2): MinkowskiELU()
|
852 |
+
)
|
853 |
+
(17): Sequential(
|
854 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
855 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
856 |
+
(2): MinkowskiELU()
|
857 |
+
)
|
858 |
+
)
|
859 |
+
)
|
860 |
+
(point_head): None
|
861 |
+
(roi_head): CAGroup3DRoIHead(
|
862 |
+
(proposal_target_layer): ProposalTargetLayer()
|
863 |
+
(reg_loss_func): WeightedSmoothL1Loss()
|
864 |
+
(roi_grid_pool_layers): ModuleList(
|
865 |
+
(0): SimplePoolingLayer(
|
866 |
+
(grid_conv): MinkowskiConvolution(in=64, out=128, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
867 |
+
(grid_bn): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
868 |
+
(grid_relu): MinkowskiELU()
|
869 |
+
(pooling_conv): MinkowskiConvolution(in=128, out=128, kernel_size=[7, 7, 7], stride=[1, 1, 1], dilation=[1, 1, 1])
|
870 |
+
(pooling_bn): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
871 |
+
)
|
872 |
+
)
|
873 |
+
(reg_fc_layers): Sequential(
|
874 |
+
(0): Linear(in_features=128, out_features=256, bias=False)
|
875 |
+
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
876 |
+
(2): ReLU()
|
877 |
+
(3): Dropout(p=0.3, inplace=False)
|
878 |
+
(4): Linear(in_features=256, out_features=256, bias=False)
|
879 |
+
(5): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
880 |
+
(6): ReLU()
|
881 |
+
)
|
882 |
+
(reg_pred_layer): Linear(in_features=256, out_features=6, bias=True)
|
883 |
+
)
|
884 |
+
)
|
885 |
+
)
|
886 |
+
2023-03-26 13:04:44,332 INFO **********************Start training scannet_models/CAGroup3D(cagroup3d-win10-scannet)**********************
|
887 |
+
2023-03-26 17:57:27,387 INFO Epoch [ 1][ 50]/[ 751] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.41121925950050353, loss_bbox: 0.591667195558548, loss_cls: 0.6245615810155869, loss_sem: 0.9226177096366882, loss_vote: 0.3941664391756058, one_stage_loss: 2.944232153892517, rcnn_loss_reg: 0.09563416212797166, loss_two_stage: 0.09563416212797166,
|
888 |
+
2023-03-27 01:05:25,842 INFO Epoch [ 1][ 100]/[ 751] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.6474508833885193, loss_bbox: 0.9094607937335968, loss_cls: 0.6924016952514649, loss_sem: 0.49122214019298555, loss_vote: 0.3444094204902649, one_stage_loss: 3.0849449157714846, rcnn_loss_reg: 0.8054922795295716, loss_two_stage: 0.8054922795295716,
|
889 |
+
2023-03-27 09:09:50,953 INFO Epoch [ 1][ 150]/[ 751] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.6611717569828034, loss_bbox: 0.9181686878204346, loss_cls: 0.5644582629203796, loss_sem: 0.41418565332889556, loss_vote: 0.3369732141494751, one_stage_loss: 2.89495756149292, rcnn_loss_reg: 0.8431160509586334, loss_two_stage: 0.8431160509586334,
|
890 |
+
2023-03-27 16:28:05,927 INFO Epoch [ 1][ 200]/[ 751] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.656439710855484, loss_bbox: 0.9153263866901398, loss_cls: 0.5242239183187485, loss_sem: 0.3945661741495132, loss_vote: 0.3303620731830597, one_stage_loss: 2.8209182739257814, rcnn_loss_reg: 0.7945010769367218, loss_two_stage: 0.7945010769367218,
|
891 |
+
2023-03-27 23:44:41,413 INFO Epoch [ 1][ 250]/[ 751] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.6566858065128326, loss_bbox: 0.9171705722808838, loss_cls: 0.4788109028339386, loss_sem: 0.373558344244957, loss_vote: 0.3260516971349716, one_stage_loss: 2.7522773361206054, rcnn_loss_reg: 0.8879509460926056, loss_two_stage: 0.8879509460926056,
|
892 |
+
2023-03-28 07:09:01,191 INFO Epoch [ 1][ 300]/[ 751] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.6561981821060181, loss_bbox: 0.9205144667625427, loss_cls: 0.43737293481826783, loss_sem: 0.36072677552700044, loss_vote: 0.33960326194763185, one_stage_loss: 2.7144156312942505, rcnn_loss_reg: 0.8250401616096497, loss_two_stage: 0.8250401616096497,
|
893 |
+
2023-03-28 14:42:28,718 INFO Epoch [ 1][ 350]/[ 751] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.6570986831188201, loss_bbox: 0.9180864799022674, loss_cls: 0.4228892314434052, loss_sem: 0.34731213927268983, loss_vote: 0.33325146436691283, one_stage_loss: 2.6786380004882813, rcnn_loss_reg: 0.8330509012937546, loss_two_stage: 0.8330509012937546,
|
894 |
+
2023-03-28 22:09:49,850 INFO Epoch [ 1][ 400]/[ 751] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.656031631231308, loss_bbox: 0.9223491895198822, loss_cls: 0.43734550893306734, loss_sem: 0.3400343120098114, loss_vote: 0.3391466856002808, one_stage_loss: 2.694907293319702, rcnn_loss_reg: 0.8316945809125901, loss_two_stage: 0.8316945809125901,
|
895 |
+
2023-03-29 05:19:54,386 INFO Epoch [ 1][ 450]/[ 751] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.6560523915290832, loss_bbox: 0.9204720866680145, loss_cls: 0.40069283843040465, loss_sem: 0.32628621518611906, loss_vote: 0.32195273011922837, one_stage_loss: 2.6254562520980835, rcnn_loss_reg: 0.8233302390575409, loss_two_stage: 0.8233302390575409,
|
896 |
+
2023-03-29 12:20:56,383 INFO Epoch [ 1][ 500]/[ 751] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.6548633110523224, loss_bbox: 0.9198633074760437, loss_cls: 0.37377377331256867, loss_sem: 0.3071948343515396, loss_vote: 0.31842518240213397, one_stage_loss: 2.5741204023361206, rcnn_loss_reg: 0.7916725933551788, loss_two_stage: 0.7916725933551788,
|
897 |
+
2023-03-29 19:32:20,640 INFO Epoch [ 1][ 550]/[ 751] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.6493923151493073, loss_bbox: 0.9170721697807313, loss_cls: 0.3662705320119858, loss_sem: 0.3003894621133804, loss_vote: 0.3346439358592033, one_stage_loss: 2.567768402099609, rcnn_loss_reg: 0.7994219380617141, loss_two_stage: 0.7994219380617141,
|
898 |
+
2023-03-30 02:35:54,561 INFO Epoch [ 1][ 600]/[ 751] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.650925452709198, loss_bbox: 0.9172565031051636, loss_cls: 0.35118326723575594, loss_sem: 0.28706444770097733, loss_vote: 0.32694552272558214, one_stage_loss: 2.533375201225281, rcnn_loss_reg: 0.7785894459486008, loss_two_stage: 0.7785894459486008,
|
899 |
+
2023-03-30 09:21:20,835 INFO Epoch [ 1][ 650]/[ 751] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.6479902148246766, loss_bbox: 0.9160817635059356, loss_cls: 0.3432228803634644, loss_sem: 0.27448746263980867, loss_vote: 0.33310336887836456, one_stage_loss: 2.5148857116699217, rcnn_loss_reg: 0.818324797153473, loss_two_stage: 0.818324797153473,
|
900 |
+
2023-03-30 16:02:35,928 INFO Epoch [ 1][ 700]/[ 751] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.6494181442260742, loss_bbox: 0.9183876121044159, loss_cls: 0.3300267934799194, loss_sem: 0.2648452860116959, loss_vote: 0.32385929524898527, one_stage_loss: 2.486537137031555, rcnn_loss_reg: 0.8490620160102844, loss_two_stage: 0.8490620160102844,
|
901 |
+
2023-03-30 22:40:11,348 INFO Epoch [ 1][ 750]/[ 751] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.6499875509738922, loss_bbox: 0.9197572791576385, loss_cls: 0.3292002022266388, loss_sem: 0.2616344812512398, loss_vote: 0.32180937737226484, one_stage_loss: 2.482388873100281, rcnn_loss_reg: 0.7996994721889495, loss_two_stage: 0.7996994721889495,
|
902 |
+
2023-03-30 22:49:33,109 INFO **********************End training scannet_models/CAGroup3D(cagroup3d-win10-scannet)**********************
|
903 |
+
|
904 |
+
|
905 |
+
|
906 |
+
2023-03-30 22:49:33,111 INFO **********************Start evaluation scannet_models/CAGroup3D(cagroup3d-win10-scannet)**********************
|
907 |
+
2023-03-30 22:49:33,112 INFO Loading SCANNET dataset
|
908 |
+
2023-03-30 22:49:33,161 INFO Total samples for SCANNET dataset: 312
|
909 |
+
2023-03-30 22:49:33,168 INFO ==> Loading parameters from checkpoint C:\CITYU\CS5182\proj\CAGroup3D\output\scannet_models\CAGroup3D\cagroup3d-win10-scannet\ckpt\checkpoint_epoch_1.pth to CPU
|
910 |
+
2023-03-30 22:49:34,337 INFO ==> Checkpoint trained from version: pcdet+0.5.2+4ae8a35+py6af8eab
|
911 |
+
2023-03-30 22:49:34,456 INFO ==> Done (loaded 838/838)
|
912 |
+
2023-03-30 22:49:35,263 INFO *************** EPOCH 1 EVALUATION *****************
|
tensorboard/events.out.tfevents.1679807081.DESKTOP-3FL13RB
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:50e140159bf7588b95f8ebc81f287987aab9b3327b6c5c1c2d03faa22e50c06e
|
3 |
+
size 506189
|