|
--- |
|
license: mit |
|
base_model: facebook/bart-large-xsum |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: bart_samsum_finetuned_for_asr |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart_samsum_finetuned_for_asr |
|
|
|
This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co./facebook/bart-large-xsum) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4623 |
|
- Rouge1: 54.4349 |
|
- Rouge2: 29.4619 |
|
- Rougel: 44.7701 |
|
- Rougelsum: 50.2825 |
|
- Gen Len: 30.2751 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 1.3855 | 0.9997 | 1841 | 1.5274 | 52.3133 | 27.7547 | 43.0233 | 48.3891 | 30.3004 | |
|
| 1.0882 | 2.0 | 3683 | 1.4969 | 53.2457 | 28.4129 | 44.1196 | 49.1579 | 30.2637 | |
|
| 0.8376 | 2.9997 | 5524 | 1.5882 | 52.6929 | 27.5974 | 43.3339 | 47.9779 | 30.8034 | |
|
| 0.6756 | 4.0 | 7366 | 1.6617 | 52.5167 | 27.1278 | 43.037 | 48.1382 | 30.5299 | |
|
| 0.5417 | 4.9986 | 9205 | 1.8083 | 52.0696 | 26.8054 | 42.6108 | 47.5455 | 30.2894 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|