metadata
tags:
- timm
- feature-extraction
- image-classification
library_name: timm
license: apache-2.0
Model card for vit_giant_patch14_reg4_224.h-optimus-v0
Model Details
- Model Type: Feature backbone
- Model Stats:
- Params: 1.13B (giant)
- Image size: 224 x 224 x 3
- Patch size: 14 x 14 x 3
- Registers: 4
- Repository: github.com:bioptimus/releases
- Original Weights: https://public-bioptimus-eu-west-3.s3.eu-west-3.amazonaws.com/h-optimus-v0/checkpoint.pth
Model Usage
Image Embeddings
from PIL import Image
import torch
import timm
# load model from the hub
model = timm.create_model(
model_name="hf-hub:1aurent/vit_giant_patch14_reg4_224.h-optimus-v0",
pretrained=True,
).eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
img = Image.open(...)
data = transforms(img).unsqueeze(0) # input is a (batch_size, num_channels, img_size, img_size) shaped tensor
output = model(data) # output is a (batch_size, num_features) shaped tensor
Citation
@software{hoptimus0,
title = {H-optimus-0},
author = {Saillard, Charlie and Jenatton, Rodolphe and Llinares-López, Felipe and Mariet, Zelda and Cahané, David and Durand, Eric and Vert, Jean-Philippe},
url = {https://github.com/bioptimus/releases/tree/main/models/h-optimus/v0},
year = {2024},
}