|
--- |
|
license: apache-2.0 |
|
base_model: microsoft/swin-tiny-patch4-window7-224 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: spa_images_classifier_jd_v1_convnext |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.978066110596231 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# spa_images_classifier_jd_v1_convnext |
|
|
|
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0662 |
|
- Accuracy: 0.9781 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.2494 | 1.0 | 227 | 0.1194 | 0.9555 | |
|
| 0.2333 | 2.0 | 455 | 0.1008 | 0.9635 | |
|
| 0.1977 | 3.0 | 683 | 0.0855 | 0.9703 | |
|
| 0.1405 | 4.0 | 911 | 0.0792 | 0.9744 | |
|
| 0.1575 | 5.0 | 1138 | 0.0734 | 0.9731 | |
|
| 0.0948 | 6.0 | 1366 | 0.0666 | 0.9778 | |
|
| 0.1049 | 7.0 | 1594 | 0.0662 | 0.9781 | |
|
| 0.0928 | 8.0 | 1822 | 0.0693 | 0.9774 | |
|
| 0.0903 | 9.0 | 2049 | 0.0704 | 0.9771 | |
|
| 0.0759 | 9.97 | 2270 | 0.0652 | 0.9778 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.17.1 |
|
- Tokenizers 0.14.1 |
|
|