File size: 1,199 Bytes
a0b4aa4 726c911 a0b4aa4 726c911 a0b4aa4 726c911 a0b4aa4 726c911 a0b4aa4 726c911 a0b4aa4 726c911 a0b4aa4 726c911 a0b4aa4 726c911 a0b4aa4 726c911 a0b4aa4 726c911 a0b4aa4 726c911 a0b4aa4 726c911 a0b4aa4 726c911 a0b4aa4 726c911 a0b4aa4 726c911 0398176 a0b4aa4 726c911 a0b4aa4 726c911 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
license: other
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
datasets:
- generator
base_model: google/gemma-2b
model-index:
- name: cir_s_2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cir_s_2
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co./google/gemma-2b) on the generator dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
### Training results
### Framework versions
- PEFT 0.7.2.dev0
- Transformers 4.38.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.2 |