File size: 1,199 Bytes
a0b4aa4
726c911
a0b4aa4
726c911
 
 
 
 
 
a0b4aa4
726c911
 
 
a0b4aa4
 
726c911
 
a0b4aa4
726c911
a0b4aa4
726c911
a0b4aa4
726c911
a0b4aa4
726c911
a0b4aa4
726c911
a0b4aa4
726c911
a0b4aa4
726c911
a0b4aa4
726c911
a0b4aa4
726c911
a0b4aa4
726c911
a0b4aa4
726c911
 
 
 
 
 
 
 
 
 
0398176
a0b4aa4
726c911
a0b4aa4
 
 
 
 
726c911
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
license: other
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
datasets:
- generator
base_model: google/gemma-2b
model-index:
- name: cir_s_2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# cir_s_2

This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co./google/gemma-2b) on the generator dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3

### Training results



### Framework versions

- PEFT 0.7.2.dev0
- Transformers 4.38.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.2