--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - azaheadhealth metrics: - accuracy - f1 - precision - recall model-index: - name: bert-azahead-v1.0 results: - task: name: Text Classification type: text-classification dataset: name: azaheadhealth type: azaheadhealth config: small split: test args: small metrics: - name: Accuracy type: accuracy value: 0.7083333333333334 - name: F1 type: f1 value: 0.46153846153846156 - name: Precision type: precision value: 0.5 - name: Recall type: recall value: 0.42857142857142855 --- # bert-azahead-v1.0 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the azaheadhealth dataset. It achieves the following results on the evaluation set: - Loss: 0.7204 - Accuracy: 0.7083 - F1: 0.4615 - Precision: 0.5 - Recall: 0.4286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.5889 | 1.0 | 10 | 0.5438 | 0.625 | 0.0 | 0.0 | 0.0 | | 0.4926 | 2.0 | 20 | 0.4309 | 0.75 | 0.5714 | 0.5714 | 0.5714 | | 0.3613 | 3.0 | 30 | 0.4260 | 0.75 | 0.5714 | 0.5714 | 0.5714 | | 0.2628 | 4.0 | 40 | 0.4989 | 0.75 | 0.5714 | 0.5714 | 0.5714 | | 0.1658 | 5.0 | 50 | 0.5883 | 0.7083 | 0.4615 | 0.5 | 0.4286 | | 0.1153 | 6.0 | 60 | 0.6374 | 0.6667 | 0.3333 | 0.4 | 0.2857 | | 0.074 | 7.0 | 70 | 0.6709 | 0.6667 | 0.3333 | 0.4 | 0.2857 | | 0.0548 | 8.0 | 80 | 0.6848 | 0.7083 | 0.4615 | 0.5 | 0.4286 | | 0.0456 | 9.0 | 90 | 0.7322 | 0.7083 | 0.4615 | 0.5 | 0.4286 | | 0.0439 | 10.0 | 100 | 0.7204 | 0.7083 | 0.4615 | 0.5 | 0.4286 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.13.2