--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - azaheadhealth metrics: - accuracy - f1 - precision - recall model-index: - name: azahead-bert-v1.0 results: - task: name: Text Classification type: text-classification dataset: name: azaheadhealth type: azaheadhealth config: small split: test args: small metrics: - name: Accuracy type: accuracy value: 0.7916666666666666 - name: F1 type: f1 value: 0.6666666666666666 - name: Precision type: precision value: 0.625 - name: Recall type: recall value: 0.7142857142857143 --- # azahead-bert-v1.0 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the azaheadhealth dataset. It achieves the following results on the evaluation set: - Loss: 0.5108 - Accuracy: 0.7917 - F1: 0.6667 - Precision: 0.625 - Recall: 0.7143 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6157 | 1.0 | 20 | 0.5087 | 0.7083 | 0.0 | 0.0 | 0.0 | | 0.4057 | 2.0 | 40 | 0.5892 | 0.7083 | 0.2222 | 0.5 | 0.1429 | | 0.2788 | 3.0 | 60 | 0.4834 | 0.7917 | 0.4444 | 1.0 | 0.2857 | | 0.1726 | 4.0 | 80 | 0.5108 | 0.7917 | 0.6667 | 0.625 | 0.7143 | | 0.1271 | 5.0 | 100 | 0.6210 | 0.7917 | 0.6154 | 0.6667 | 0.5714 | | 0.1045 | 6.0 | 120 | 0.6850 | 0.7917 | 0.6154 | 0.6667 | 0.5714 | | 0.0108 | 7.0 | 140 | 0.7771 | 0.75 | 0.5714 | 0.5714 | 0.5714 | | 0.0248 | 8.0 | 160 | 0.8454 | 0.7917 | 0.6154 | 0.6667 | 0.5714 | | 0.0152 | 9.0 | 180 | 0.8667 | 0.7917 | 0.6154 | 0.6667 | 0.5714 | | 0.0064 | 10.0 | 200 | 0.8776 | 0.75 | 0.5714 | 0.5714 | 0.5714 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.13.2