--- language: - pt license: apache-2.0 base_model: openai/whisper-medium tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Medium Portuguese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_13_0 pt type: mozilla-foundation/common_voice_13_0 config: pt split: test args: pt metrics: - name: Wer type: wer value: 6.331942299477541 --- # Whisper Medium Portuguese This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co./openai/whisper-medium) on the mozilla-foundation/common_voice_13_0 pt dataset. It achieves the following results on the evaluation set: - Loss: 0.1753 - Wer: 6.3319 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.0999 | 3.52 | 1000 | 0.1753 | 6.3319 | | 0.0436 | 7.04 | 2000 | 0.2027 | 6.5521 | | 0.0113 | 10.56 | 3000 | 0.3135 | 6.7361 | | 0.0041 | 14.08 | 4000 | 0.3616 | 6.8889 | | 0.0026 | 17.61 | 5000 | 0.3908 | 7.0565 | | 0.0016 | 21.13 | 6000 | 0.4078 | 7.1419 | | 0.0013 | 24.65 | 7000 | 0.4227 | 7.1534 | | 0.001 | 28.17 | 8000 | 0.4343 | 7.1764 | | 0.0008 | 31.69 | 9000 | 0.4424 | 7.2076 | | 0.0008 | 35.21 | 10000 | 0.4464 | 7.2224 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.15.1