--- language: - pt license: apache-2.0 base_model: openai/whisper-large-v3 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Large-V3 Portuguese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_13_0 pt type: mozilla-foundation/common_voice_13_0 config: pt split: test args: pt metrics: - name: Wer type: wer value: 4.600269444353169 --- # Whisper Large-V3 Portuguese This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the mozilla-foundation/common_voice_13_0 pt dataset. It achieves the following results on the evaluation set: - Loss: 0.4315 - Wer: 4.6003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.0702 | 3.53 | 1000 | 0.1289 | 4.0367 | | 0.0247 | 7.05 | 2000 | 0.1806 | 4.4294 | | 0.0074 | 10.58 | 3000 | 0.2821 | 4.7481 | | 0.0022 | 14.11 | 4000 | 0.3160 | 4.6249 | | 0.0016 | 17.64 | 5000 | 0.3261 | 4.6479 | | 0.0027 | 21.16 | 6000 | 0.3373 | 4.6479 | | 0.0009 | 24.69 | 7000 | 0.3642 | 4.7087 | | 0.0007 | 28.22 | 8000 | 0.3551 | 4.6611 | | 0.0006 | 31.75 | 9000 | 0.3741 | 4.7481 | | 0.0004 | 35.27 | 10000 | 0.3755 | 4.6791 | | 0.0008 | 38.8 | 11000 | 0.3690 | 4.6381 | | 0.0002 | 42.33 | 12000 | 0.3888 | 4.5115 | | 0.0002 | 45.86 | 13000 | 0.3982 | 4.5855 | | 0.0001 | 49.38 | 14000 | 0.4040 | 4.6085 | | 0.0001 | 52.91 | 15000 | 0.4100 | 4.5888 | | 0.0001 | 56.44 | 16000 | 0.4165 | 4.5871 | | 0.0001 | 59.96 | 17000 | 0.4211 | 4.5855 | | 0.0001 | 63.49 | 18000 | 0.4265 | 4.5838 | | 0.0001 | 67.02 | 19000 | 0.4302 | 4.5921 | | 0.0001 | 70.55 | 20000 | 0.4315 | 4.6003 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.15.1