--- license: apache-2.0 base_model: openai/whisper-large tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: openai/whisper-large results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: pt split: test args: pt metrics: - name: Wer type: wer value: 6.399303387769856 --- # openai/whisper-large This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co./openai/whisper-large) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4799 - Wer: 6.3993 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.077 | 3.53 | 1000 | 0.1616 | 5.4957 | | 0.0155 | 7.05 | 2000 | 0.2549 | 6.1956 | | 0.0045 | 10.58 | 3000 | 0.3122 | 5.9261 | | 0.0017 | 14.11 | 4000 | 0.3317 | 6.0099 | | 0.0018 | 17.64 | 5000 | 0.3604 | 6.0099 | | 0.0009 | 21.16 | 6000 | 0.3779 | 6.1791 | | 0.0012 | 24.69 | 7000 | 0.3470 | 6.0066 | | 0.0013 | 28.22 | 8000 | 0.3838 | 6.1479 | | 0.0007 | 31.75 | 9000 | 0.3839 | 6.0395 | | 0.0003 | 35.27 | 10000 | 0.4090 | 6.2054 | | 0.0003 | 38.8 | 11000 | 0.4053 | 6.2859 | | 0.0002 | 42.33 | 12000 | 0.4235 | 6.3467 | | 0.0002 | 45.86 | 13000 | 0.4326 | 6.3500 | | 0.0001 | 49.38 | 14000 | 0.4415 | 6.3714 | | 0.0001 | 52.91 | 15000 | 0.4506 | 6.3878 | | 0.0001 | 56.44 | 16000 | 0.4586 | 6.4092 | | 0.0001 | 59.96 | 17000 | 0.4663 | 6.3944 | | 0.0001 | 63.49 | 18000 | 0.4730 | 6.3911 | | 0.0001 | 67.02 | 19000 | 0.4778 | 6.3944 | | 0.0001 | 70.55 | 20000 | 0.4799 | 6.3993 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.15.1