--- license: apache-2.0 base_model: openai/whisper-large tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: openai/whisper-large results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: eu split: test args: eu metrics: - name: Wer type: wer value: 12.234193365466401 --- # openai/whisper-large This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co./openai/whisper-large) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4369 - Wer: 12.2342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 20000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.0196 | 4.01 | 1000 | 0.2825 | 15.4725 | | 0.0039 | 9.01 | 2000 | 0.3072 | 14.2270 | | 0.0031 | 14.01 | 3000 | 0.3170 | 13.7652 | | 0.0023 | 19.0 | 4000 | 0.3310 | 13.6640 | | 0.0014 | 24.0 | 5000 | 0.3384 | 13.5749 | | 0.0034 | 29.0 | 6000 | 0.3425 | 13.7450 | | 0.0011 | 33.01 | 7000 | 0.3476 | 13.0990 | | 0.001 | 38.01 | 8000 | 0.3432 | 13.0990 | | 0.0004 | 43.01 | 9000 | 0.3524 | 12.8033 | | 0.0017 | 48.01 | 10000 | 0.3620 | 13.3946 | | 0.0003 | 53.0 | 11000 | 0.3564 | 12.6190 | | 0.0001 | 58.0 | 12000 | 0.3675 | 12.6352 | | 0.0 | 63.0 | 13000 | 0.3878 | 12.4286 | | 0.0 | 67.01 | 14000 | 0.3996 | 12.3577 | | 0.0 | 72.01 | 15000 | 0.4088 | 12.3456 | | 0.0 | 77.01 | 16000 | 0.4167 | 12.3091 | | 0.0 | 82.01 | 17000 | 0.4241 | 12.3112 | | 0.0 | 87.0 | 18000 | 0.4302 | 12.3193 | | 0.0 | 92.0 | 19000 | 0.4351 | 12.2565 | | 0.0 | 97.0 | 20000 | 0.4369 | 12.2342 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3