--- license: apache-2.0 base_model: openai/whisper-large tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: openai/whisper-large results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: ca split: test args: ca metrics: - name: Wer type: wer value: 5.194055444412689 --- # openai/whisper-large This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co./openai/whisper-large) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1310 - Wer: 5.1941 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 20000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.1059 | 1.02 | 1000 | 0.1744 | 7.6342 | | 0.0159 | 3.02 | 2000 | 0.1943 | 7.3850 | | 0.0526 | 5.02 | 3000 | 0.1899 | 6.8522 | | 0.058 | 7.02 | 4000 | 0.1782 | 6.7802 | | 0.0161 | 9.02 | 5000 | 0.1995 | 6.6339 | | 0.065 | 11.02 | 6000 | 0.1563 | 6.4544 | | 0.082 | 13.02 | 7000 | 0.1789 | 6.0309 | | 0.0339 | 15.02 | 8000 | 0.1509 | 5.7554 | | 0.0581 | 17.01 | 9000 | 0.1573 | 6.0446 | | 0.0181 | 19.01 | 10000 | 0.1838 | 5.5913 | | 0.0188 | 21.01 | 11000 | 0.1610 | 5.4804 | | 0.0134 | 23.01 | 12000 | 0.1821 | 5.3953 | | 0.008 | 25.01 | 13000 | 0.1748 | 5.3804 | | 0.0071 | 27.01 | 14000 | 0.1858 | 5.4701 | | 0.0371 | 29.01 | 15000 | 0.1610 | 5.6599 | | 0.0076 | 31.01 | 16000 | 0.1571 | 5.1655 | | 0.0181 | 33.01 | 17000 | 0.1449 | 5.4558 | | 0.0522 | 35.0 | 18000 | 0.1340 | 5.8388 | | 0.0356 | 37.0 | 19000 | 0.1458 | 5.0700 | | 0.0132 | 39.0 | 20000 | 0.1310 | 5.1941 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3