Upload folder using huggingface_hub
Browse files- .gitattributes +2 -9
- README.md +61 -0
- a2c-LunarLander-v2.zip +3 -0
- a2c-LunarLander-v2/_stable_baselines3_version +1 -0
- a2c-LunarLander-v2/data +96 -0
- a2c-LunarLander-v2/policy.optimizer.pth +3 -0
- a2c-LunarLander-v2/policy.pth +3 -0
- a2c-LunarLander-v2/pytorch_variables.pth +3 -0
- a2c-LunarLander-v2/system_info.txt +7 -0
- args.yml +59 -0
- config.yml +15 -0
- env_kwargs.yml +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -2,34 +2,27 @@
|
|
2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
|
|
5 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
6 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
8 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
9 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
|
|
10 |
*.model filter=lfs diff=lfs merge=lfs -text
|
11 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
12 |
*.onnx filter=lfs diff=lfs merge=lfs -text
|
13 |
*.ot filter=lfs diff=lfs merge=lfs -text
|
14 |
*.parquet filter=lfs diff=lfs merge=lfs -text
|
15 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
16 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
17 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
18 |
*.rar filter=lfs diff=lfs merge=lfs -text
|
|
|
19 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
20 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
|
|
21 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
22 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
23 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
24 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 181.08 +/- 95.35
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **A2C** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m rl_zoo3.load_from_hub --algo a2c --env LunarLander-v2 -orga sb3 -f logs/
|
41 |
+
python enjoy.py --algo a2c --env LunarLander-v2 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo a2c --env LunarLander-v2 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m rl_zoo3.push_to_hub --algo a2c --env LunarLander-v2 -f logs/ -orga sb3
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('ent_coef', 1e-05),
|
54 |
+
('gamma', 0.995),
|
55 |
+
('learning_rate', 'lin_0.00083'),
|
56 |
+
('n_envs', 8),
|
57 |
+
('n_steps', 5),
|
58 |
+
('n_timesteps', 200000.0),
|
59 |
+
('policy', 'MlpPolicy'),
|
60 |
+
('normalize', False)])
|
61 |
+
```
|
a2c-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f217540082b29c21a2273896280baaed3186d174dcc7b359aa19430cefac18a
|
3 |
+
size 105535
|
a2c-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a8
|
a2c-LunarLander-v2/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2934778950>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f29347789e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2934778a70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2934778b00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f2934778b90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f2934778c20>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2934778cb0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f2934778d40>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2934778dd0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2934778e60>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2934778ef0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f29347c9840>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
25 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
26 |
+
"optimizer_kwargs": {
|
27 |
+
"alpha": 0.99,
|
28 |
+
"eps": 1e-05,
|
29 |
+
"weight_decay": 0
|
30 |
+
}
|
31 |
+
},
|
32 |
+
"observation_space": {
|
33 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
34 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwiFlGgKiUMgAACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgQaBJLAIWUaBSHlFKUKEsBSwiFlGgKiUMgAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UdJRijA1ib3VuZGVkX2JlbG93lGgQaBJLAIWUaBSHlFKUKEsBSwiFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMIAAAAAAAAAACUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwiFlGgoiUMIAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE6MBl9zaGFwZZRLCIWUdWIu",
|
35 |
+
"dtype": "float32",
|
36 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
37 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
38 |
+
"bounded_below": "[False False False False False False False False]",
|
39 |
+
"bounded_above": "[False False False False False False False False]",
|
40 |
+
"_np_random": null,
|
41 |
+
"_shape": [
|
42 |
+
8
|
43 |
+
]
|
44 |
+
},
|
45 |
+
"action_space": {
|
46 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
47 |
+
":serialized:": "gASVTQsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoE4wFc3RhdGWUfZQojANrZXmUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoB4wHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAU1wAoWUaAmMAnU0lImIh5RSlChLA2gNTk5OSv////9K/////0sAdJRiiULACQAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlHSUYowDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWKMBl9zaGFwZZQpdWIu",
|
48 |
+
"n": 4,
|
49 |
+
"dtype": "int64",
|
50 |
+
"_np_random": "RandomState(MT19937)",
|
51 |
+
"_shape": []
|
52 |
+
},
|
53 |
+
"n_envs": 8,
|
54 |
+
"num_timesteps": 200000,
|
55 |
+
"_total_timesteps": 200000,
|
56 |
+
"_num_timesteps_at_start": 0,
|
57 |
+
"seed": 0,
|
58 |
+
"action_noise": null,
|
59 |
+
"start_time": 1614710447.0474272,
|
60 |
+
"learning_rate": {
|
61 |
+
":type:": "<class 'function'>",
|
62 |
+
":serialized:": "gASVngMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyECiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMAogICAgICAgIDpwYXJhbSBwcm9ncmVzc19yZW1haW5pbmc6IChmbG9hdCkKICAgICAgICA6cmV0dXJuOiAoZmxvYXQpCiAgICAgICAglIWUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjFovdm9sdW1lL1VTRVJTVE9SRS9yYWZmX2FuL3Byb2plY3RzL2V4cGVyaW1lbnRzL3JlbGVhc2UxLjAvcmwtYmFzZWxpbmVzMy16b28vdXRpbHMvdXRpbHMucHmUjARmdW5jlEv+QwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAV1dGlsc5SMCF9fbmFtZV9flIwLdXRpbHMudXRpbHOUjAhfX2ZpbGVfX5SMWi92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvZXhwZXJpbWVudHMvcmVsZWFzZTEuMC9ybC1iYXNlbGluZXMzLXpvby91dGlscy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoLnWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flGgKjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/SzKLbYbsGIWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
63 |
+
},
|
64 |
+
"tensorboard_log": null,
|
65 |
+
"lr_schedule": {
|
66 |
+
":type:": "<class 'function'>",
|
67 |
+
":serialized:": "gASVngMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyECiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMAogICAgICAgIDpwYXJhbSBwcm9ncmVzc19yZW1haW5pbmc6IChmbG9hdCkKICAgICAgICA6cmV0dXJuOiAoZmxvYXQpCiAgICAgICAglIWUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjFovdm9sdW1lL1VTRVJTVE9SRS9yYWZmX2FuL3Byb2plY3RzL2V4cGVyaW1lbnRzL3JlbGVhc2UxLjAvcmwtYmFzZWxpbmVzMy16b28vdXRpbHMvdXRpbHMucHmUjARmdW5jlEv+QwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAV1dGlsc5SMCF9fbmFtZV9flIwLdXRpbHMudXRpbHOUjAhfX2ZpbGVfX5SMWi92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvZXhwZXJpbWVudHMvcmVsZWFzZTEuMC9ybC1iYXNlbGluZXMzLXpvby91dGlscy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoLnWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flGgKjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/SzKLbYbsGIWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
68 |
+
},
|
69 |
+
"_last_obs": null,
|
70 |
+
"_last_episode_starts": null,
|
71 |
+
"_last_original_obs": null,
|
72 |
+
"_episode_num": 0,
|
73 |
+
"use_sde": false,
|
74 |
+
"sde_sample_freq": -1,
|
75 |
+
"_current_progress_remaining": 0.0,
|
76 |
+
"ep_info_buffer": {
|
77 |
+
":type:": "<class 'collections.deque'>",
|
78 |
+
":serialized:": "gASVORAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITzxnCwiHSkCUhpRSlIwBbJRLf4wBdJRHQHBNVW8yvcJ1fZQoaAZoCWgPQwh2bW+3JBtIQJSGlFKUaBVLiGgWR0BwTijKxLTQdX2UKGgGaAloD0MIhIJStHKvHkCUhpRSlGgVS49oFkdAcE8+az/p+3V9lChoBmgJaA9DCLeWyXA8nyxAlIaUUpRoFUtlaBZHQHBQa8pTdcl1fZQoaAZoCWgPQwippE5AExdIQJSGlFKUaBVLqmgWR0BwUKogmqo7dX2UKGgGaAloD0MI1Ayponj9KUCUhpRSlGgVS1doFkdAcFXK+BYms3V9lChoBmgJaA9DCKneGtgqiVBAlIaUUpRoFUtqaBZHQHBWxW5paid1fZQoaAZoCWgPQwghsHJoEfJrQJSGlFKUaBVNNAFoFkdAcFb3ztkWh3V9lChoBmgJaA9DCBFXzt4Zc01AlIaUUpRoFUuXaBZHQHBYJOJtSAJ1fZQoaAZoCWgPQwiM9Q1MbjRAQJSGlFKUaBVLvmgWR0BwWF+Zw4sFdX2UKGgGaAloD0MIt7OvPEiRcECUhpRSlGgVTQQBaBZHQHBYn752yLR1fZQoaAZoCWgPQwiVC5V/Lc86QJSGlFKUaBVNAQFoFkdAcFyBeHBUJnV9lChoBmgJaA9DCIC6gQLvBALAlIaUUpRoFUu2aBZHQHBfolyBCld1fZQoaAZoCWgPQwgixmteVbxiwJSGlFKUaBVLjmgWR0BwX5FTefqYdX2UKGgGaAloD0MI26fjMQNMU0CUhpRSlGgVS5doFkdAcGA9MsYl6nV9lChoBmgJaA9DCFSOyeL+kzFAlIaUUpRoFUu1aBZHQHBgj/+85CF1fZQoaAZoCWgPQwjPhCaJpTpxQJSGlFKUaBVNRQJoFkdAcGJ2cJ+lTHV9lChoBmgJaA9DCKg4DrxanhrAlIaUUpRoFUvraBZHQHBjLJCBwuN1fZQoaAZoCWgPQwjvAE9auHxDQJSGlFKUaBVLlWgWR0BwZFiYsunNdX2UKGgGaAloD0MIML39uWjcckCUhpRSlGgVS/BoFkdAcGToRIz3y3V9lChoBmgJaA9DCCOfVzz1KktAlIaUUpRoFUtuaBZHQHCjjMeOn2t1fZQoaAZoCWgPQwiD+pY5XV5DwJSGlFKUaBVLkGgWR0BwpFnSOR1YdX2UKGgGaAloD0MIMbQ6OUNpTUCUhpRSlGgVS4BoFkdAcKcWsRxtHnV9lChoBmgJaA9DCO7O2m1X1XBAlIaUUpRoFUv7aBZHQHCqb+98JD51fZQoaAZoCWgPQwiaeAd40oohwJSGlFKUaBVLsmgWR0Bwq7xiG34LdX2UKGgGaAloD0MI/FHUmXvoE8CUhpRSlGgVS7doFkdAcK6P+XJHRXV9lChoBmgJaA9DCKn5KvlYAnFAlIaUUpRoFU0oAWgWR0BwsaRcNYr8dX2UKGgGaAloD0MI7bq3IjGxSECUhpRSlGgVS2toFkdAcLOUwztTk3V9lChoBmgJaA9DCPiqlQm/tA/AlIaUUpRoFUv2aBZHQHC0m/zreIl1fZQoaAZoCWgPQwgyc4HLY/0TwJSGlFKUaBVL82gWR0BwuCOearmydX2UKGgGaAloD0MIeZPfohOHbECUhpRSlGgVTVYBaBZHQHC4tgWrOqx1fZQoaAZoCWgPQwj52ch1k9ZxQJSGlFKUaBVLxGgWR0BwuK8g6ltTdX2UKGgGaAloD0MIEHhgAOHDCECUhpRSlGgVS61oFkdAcLrKOT7l73V9lChoBmgJaA9DCJT43An2QVNAlIaUUpRoFUu3aBZHQHC913dKujh1fZQoaAZoCWgPQwiiRiHJrN4QQJSGlFKUaBVLXWgWR0BwwIhePaL5dX2UKGgGaAloD0MI0QK0rWad/7+UhpRSlGgVS51oFkdAcMKDp1RtQHV9lChoBmgJaA9DCK1QpPs5LSHAlIaUUpRoFUv8aBZHQHDFjjJdSl51fZQoaAZoCWgPQwgqAwe0dKUqQJSGlFKUaBVL22gWR0Bwx3iXIEKWdX2UKGgGaAloD0MIs0KR7uf1bECUhpRSlGgVTZwCaBZHQHDIopc5bQl1fZQoaAZoCWgPQwj76T9rfntwQJSGlFKUaBVNTgFoFkdAcMrPEsJ6Y3V9lChoBmgJaA9DCGlwW1t4jE1AlIaUUpRoFUuCaBZHQHDMRCIDYAd1fZQoaAZoCWgPQwhgWP5824tuQJSGlFKUaBVNWQFoFkdAcM/bBoEjgXV9lChoBmgJaA9DCMy4qYHmw1NAlIaUUpRoFUuZaBZHQHDQkS26TW51fZQoaAZoCWgPQwiOjxZnDAMqQJSGlFKUaBVLsWgWR0Bw1GILw4KhdX2UKGgGaAloD0MIOuY8Y5/lcECUhpRSlGgVTS8BaBZHQHDV52U0Nz91fZQoaAZoCWgPQwh+j/rrFbhvQJSGlFKUaBVNeAFoFkdAcNf/IsAeaXV9lChoBmgJaA9DCJ9ZEqCmlg1AlIaUUpRoFUuGaBZHQHDYf1tfoid1fZQoaAZoCWgPQwhRvMrapk9wQJSGlFKUaBVL6mgWR0Bw2hiTdLxqdX2UKGgGaAloD0MI14aKcb74ckCUhpRSlGgVTQ4BaBZHQHDdszyjHn51fZQoaAZoCWgPQwgyzAna5MRHQJSGlFKUaBVL0mgWR0Bw3duHerMldX2UKGgGaAloD0MI/dmPFJGpMkCUhpRSlGgVS7JoFkdAcOD26TW5H3V9lChoBmgJaA9DCFTkEHFzVFBAlIaUUpRoFUuhaBZHQHDhzNQj2SN1fZQoaAZoCWgPQwg8hPHTOLtzQJSGlFKUaBVL62gWR0Bw509+w1R+dX2UKGgGaAloD0MInL8JhQhESkCUhpRSlGgVS7doFkdAcOm8JD3M6nV9lChoBmgJaA9DCHbAdcWMAHBAlIaUUpRoFUv8aBZHQHDqhRAKOT91fZQoaAZoCWgPQwjo3VhQGIBvQJSGlFKUaBVNVAFoFkdAcOp9C/oJRnV9lChoBmgJaA9DCK4s0Vlmd0RAlIaUUpRoFUuJaBZHQHDrLxEv0yx1fZQoaAZoCWgPQwjOp45VSo8BwJSGlFKUaBVLiWgWR0Bw8FyEL6UJdX2UKGgGaAloD0MIq5MzFHfgcECUhpRSlGgVTUsBaBZHQHDzqK508vF1fZQoaAZoCWgPQwhWZd8VwRFyQJSGlFKUaBVNKgFoFkdAcPTyLyc0+HV9lChoBmgJaA9DCDG3e7lP5klAlIaUUpRoFUuhaBZHQHD1N6kZaV51fZQoaAZoCWgPQwh1WrdB7VdXQJSGlFKUaBVLqmgWR0Bw9SRcNYr8dX2UKGgGaAloD0MITb7Z5sZUL0CUhpRSlGgVS7NoFkdAcWDo24uscXV9lChoBmgJaA9DCCsXKv9aajZAlIaUUpRoFUuYaBZHQHFk3fQ8fV91fZQoaAZoCWgPQwjjbhCtFY0hQJSGlFKUaBVLnmgWR0Bxabd43WFwdX2UKGgGaAloD0MIl8YvvJI6QECUhpRSlGgVS6doFkdAcWoucc2itnV9lChoBmgJaA9DCNzUQPM59w9AlIaUUpRoFUvMaBZHQHFrcsg+yJN1fZQoaAZoCWgPQwhB1lOrrzJzQJSGlFKUaBVNawFoFkdAcW1fVI7NjnV9lChoBmgJaA9DCLGLogc+thTAlIaUUpRoFUuGaBZHQHFtxPj4pMJ1fZQoaAZoCWgPQwgMBWwHIzRDwJSGlFKUaBVLZWgWR0BxcJ37k4m1dX2UKGgGaAloD0MIhA8lWvJSTkCUhpRSlGgVS4doFkdAcXJjzZpSJnV9lChoBmgJaA9DCIS53ct9f1FAlIaUUpRoFU3oA2gWR0Bxc2PEKmbcdX2UKGgGaAloD0MIPZgUH58oM0CUhpRSlGgVS2loFkdAcXP1bJOnEXV9lChoBmgJaA9DCIyiBz4Gsm5AlIaUUpRoFU0zAWgWR0BxdFIxxkupdX2UKGgGaAloD0MIwktw6gOJPkCUhpRSlGgVS7poFkdAcXZ9f1Hvt3V9lChoBmgJaA9DCASPb++a93FAlIaUUpRoFU2BAWgWR0Bxd1VWCEpRdX2UKGgGaAloD0MI9RJjmX5NPUCUhpRSlGgVS79oFkdAcXsVVPva13V9lChoBmgJaA9DCFc+y/PgRjJAlIaUUpRoFUukaBZHQHF9KoqCpWF1fZQoaAZoCWgPQwjUYBqGjzghQJSGlFKUaBVLs2gWR0BxfbBN21UmdX2UKGgGaAloD0MIwY7/AkEA9L+UhpRSlGgVS8NoFkdAcX4JvYODrnV9lChoBmgJaA9DCGzLgLOUzBrAlIaUUpRoFUuOaBZHQHF+grxy4nZ1fZQoaAZoCWgPQwg0TG2pg1A7QJSGlFKUaBVLhGgWR0BxgylzltCRdX2UKGgGaAloD0MI1vz4SwuTbECUhpRSlGgVTYEBaBZHQHGEKbWmP5p1fZQoaAZoCWgPQwiu1onLcRhyQJSGlFKUaBVNfAFoFkdAcYfuL74zrXV9lChoBmgJaA9DCAqi7gOQPG5AlIaUUpRoFU0rAWgWR0BxkBVNpM6BdX2UKGgGaAloD0MIg9+GGK9BJ0CUhpRSlGgVS9FoFkdAcZDByjpLVXV9lChoBmgJaA9DCHobmx2pJmLAlIaUUpRoFUuEaBZHQHGRUd/8VHp1fZQoaAZoCWgPQwjv/niv2s9xQJSGlFKUaBVNNAFoFkdAcZJbS7Xg+HV9lChoBmgJaA9DCLHAV3QrP3FAlIaUUpRoFU26AWgWR0BxkuWmgrYodX2UKGgGaAloD0MIrkZ2pWUMRECUhpRSlGgVS+VoFkdAcZMz0pVjqnV9lChoBmgJaA9DCL6G4LiMux5AlIaUUpRoFUuFaBZHQHGYNfXwsoV1fZQoaAZoCWgPQwgGE38UdZZAQJSGlFKUaBVLhmgWR0BxmNnctXgcdX2UKGgGaAloD0MIVdy4xfyaQUCUhpRSlGgVS4toFkdAcZmRpDeCTXV9lChoBmgJaA9DCHNoke18EztAlIaUUpRoFUuCaBZHQHGgSQLeANJ1fZQoaAZoCWgPQwj2JLA5BydBQJSGlFKUaBVLiGgWR0BxoXPfKp1idX2UKGgGaAloD0MI36mAe97CcUCUhpRSlGgVTTUCaBZHQHGhhCpm29d1fZQoaAZoCWgPQwiNYyR7hEocQJSGlFKUaBVLkGgWR0BxotfoicG1dX2UKGgGaAloD0MIkUQvo1gScECUhpRSlGgVTUgBaBZHQHGnimIj4Yd1fZQoaAZoCWgPQwjwNQTHZRhyQJSGlFKUaBVNcQFoFkdAcam9d/rjYXV9lChoBmgJaA9DCGiu00hLZ3JAlIaUUpRoFU3xAmgWR0BxrkWVNYbLdWUu"
|
79 |
+
},
|
80 |
+
"ep_success_buffer": {
|
81 |
+
":type:": "<class 'collections.deque'>",
|
82 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
83 |
+
},
|
84 |
+
"_n_updates": 5000,
|
85 |
+
"n_steps": 5,
|
86 |
+
"gamma": 0.995,
|
87 |
+
"gae_lambda": 1.0,
|
88 |
+
"ent_coef": 1e-05,
|
89 |
+
"vf_coef": 0.5,
|
90 |
+
"max_grad_norm": 0.5,
|
91 |
+
"normalize_advantage": false,
|
92 |
+
"_last_dones": {
|
93 |
+
":type:": "<class 'numpy.ndarray'>",
|
94 |
+
":serialized:": "gASVkAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwiFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYi4="
|
95 |
+
}
|
96 |
+
}
|
a2c-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f0a9f03f7940bca1b120977c4dd756971abdc9231764fcd28f61acc300b886d
|
3 |
+
size 42561
|
a2c-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9b1a727cad9051f81bc3e1db735fb325b4dbd9cbec9bd7a685caf8337e2a35c
|
3 |
+
size 43201
|
a2c-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
|
2 |
+
Python: 3.7.10
|
3 |
+
Stable-Baselines3: 1.5.1a8
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.2
|
7 |
+
Gym: 0.21.0
|
args.yml
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- a2c
|
4 |
+
- - env
|
5 |
+
- LunarLander-v2
|
6 |
+
- - env_kwargs
|
7 |
+
- null
|
8 |
+
- - eval_episodes
|
9 |
+
- 10
|
10 |
+
- - eval_freq
|
11 |
+
- 10000
|
12 |
+
- - gym_packages
|
13 |
+
- []
|
14 |
+
- - hyperparams
|
15 |
+
- null
|
16 |
+
- - log_folder
|
17 |
+
- rl-trained-agents/
|
18 |
+
- - log_interval
|
19 |
+
- -1
|
20 |
+
- - n_evaluations
|
21 |
+
- 20
|
22 |
+
- - n_jobs
|
23 |
+
- 1
|
24 |
+
- - n_startup_trials
|
25 |
+
- 10
|
26 |
+
- - n_timesteps
|
27 |
+
- -1
|
28 |
+
- - n_trials
|
29 |
+
- 10
|
30 |
+
- - num_threads
|
31 |
+
- -1
|
32 |
+
- - optimize_hyperparameters
|
33 |
+
- false
|
34 |
+
- - pruner
|
35 |
+
- median
|
36 |
+
- - sampler
|
37 |
+
- tpe
|
38 |
+
- - save_freq
|
39 |
+
- -1
|
40 |
+
- - save_replay_buffer
|
41 |
+
- false
|
42 |
+
- - seed
|
43 |
+
- 2122543594
|
44 |
+
- - storage
|
45 |
+
- null
|
46 |
+
- - study_name
|
47 |
+
- null
|
48 |
+
- - tensorboard_log
|
49 |
+
- ''
|
50 |
+
- - trained_agent
|
51 |
+
- ''
|
52 |
+
- - truncate_last_trajectory
|
53 |
+
- true
|
54 |
+
- - uuid
|
55 |
+
- true
|
56 |
+
- - vec_env
|
57 |
+
- dummy
|
58 |
+
- - verbose
|
59 |
+
- 1
|
config.yml
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - ent_coef
|
3 |
+
- 1.0e-05
|
4 |
+
- - gamma
|
5 |
+
- 0.995
|
6 |
+
- - learning_rate
|
7 |
+
- lin_0.00083
|
8 |
+
- - n_envs
|
9 |
+
- 8
|
10 |
+
- - n_steps
|
11 |
+
- 5
|
12 |
+
- - n_timesteps
|
13 |
+
- 200000.0
|
14 |
+
- - policy
|
15 |
+
- MlpPolicy
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
Binary file (198 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 181.0819827, "std_reward": 95.35214387969816, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T17:16:51.424138"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09c8c56865485afd7ed0a39ca65d18b110786ea1d8234926bb8d7ddfb827321a
|
3 |
+
size 27751
|