--- inference: false license: mit language: - en metrics: - exact_match - f1 - bertscore pipeline_tag: text-classification tags: - question-answering - evaluation - text datasets: - zli12321/pedants_qa_evaluation_bench --- # QA-Evaluation-Metrics 📊 [![PyPI version qa-metrics](https://img.shields.io/pypi/v/qa-metrics.svg)](https://pypi.org/project/qa-metrics/) [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1Ke23KIeHFdPWad0BModmcWKZ6jSbF5nI?usp=sharing) > A fast and lightweight Python package for evaluating question-answering models and prompting of black-box and open-source large language models. > `pip install qa-metrics` is all you need! ## 🎉 Latest Updates - **Version 0.2.19 Released!** - Paper accepted to EMNLP 2024 Findings! 🎓 - Enhanced PEDANTS with multi-pipeline support and improved edge case handling - Added support for OpenAI GPT-series and Claude Series models (OpenAI version > 1.0) - Integrated support for open-source models (LLaMA-2-70B-chat, LLaVA-1.5, etc.) via [deepinfra](https://deepinfra.com/models) - Introduced trained tiny-bert for QA evaluation (18MB model size) - Added direct Huggingface model download support for TransformerMatcher ## 🚀 Quick Start ## Table of Contents * 1. [Normalized Exact Match](#em) * 2. [Token F1 Score](#f1) * 3. [PEDANTS](#pedants) * 4. [Finetuned Neural Matching](#neural) * 5. [Prompting LLM](#llm) ### Prerequisites - Python >= 3.6 - openai >= 1.0 ### Installation ```bash pip install qa-metrics ``` ## 💡 Features Our package offers six QA evaluation methods with varying strengths: | Method | Best For | Cost | Correlation with Human Judgment | |--------|----------|------|--------------------------------| | Normalized Exact Match | Short-form QA (NQ-OPEN, HotpotQA, etc.) | Free | Good | | PEDANTS | Both short & medium-form QA | Free | Very High | | [Neural Evaluation](https://huggingface.co./zli12321/answer_equivalence_tiny_bert) | Both short & long-form QA | Free | High | | [Open Source LLM Evaluation](https://huggingface.co./zli12321/prometheus2-2B) | All QA types | Free | High | | Black-box LLM Evaluation | All QA types | Paid | Highest | ## 📖 Documentation ### 1. Normalized Exact Match #### Method: `em_match` **Parameters** - `reference_answer` (list of str): A list of gold (correct) answers to the question - `candidate_answer` (str): The answer provided by a candidate that needs to be evaluated **Returns** - `boolean`: True if there are any exact normalized matches between gold and candidate answers ```python from qa_metrics.em import em_match reference_answer = ["The Frog Prince", "The Princess and the Frog"] candidate_answer = "The movie \"The Princess and the Frog\" is loosely based off the Brother Grimm's \"Iron Henry\"" match_result = em_match(reference_answer, candidate_answer) ``` ### 2. F1 Score #### Method: `f1_score_with_precision_recall` **Parameters** - `reference_answer` (str): A gold (correct) answer to the question - `candidate_answer` (str): The answer provided by a candidate that needs to be evaluated **Returns** - `dictionary`: Contains the F1 score, precision, and recall between a gold and candidate answer #### Method: `f1_match` **Parameters** - `reference_answer` (list of str): List of gold answers - `candidate_answer` (str): Candidate answer to evaluate - `threshold` (float): F1 score threshold for considering a match (default: 0.5) **Returns** - `boolean`: True if F1 score exceeds threshold for any gold answer ```python from qa_metrics.f1 import f1_match, f1_score_with_precision_recall f1_stats = f1_score_with_precision_recall(reference_answer[0], candidate_answer) match_result = f1_match(reference_answer, candidate_answer, threshold=0.5) ``` ### 3. PEDANTS #### Method: `get_score` **Parameters** - `reference_answer` (str): A Gold answer - `candidate_answer` (str): Candidate answer to evaluate - `question` (str): The question being evaluated **Returns** - `float`: The similarity score between two strings (0 to 1) #### Method: `get_highest_score` **Parameters** - `reference_answer` (list of str): List of gold answers - `candidate_answer` (str): Candidate answer to evaluate - `question` (str): The question being evaluated **Returns** - `dictionary`: Contains the gold answer and candidate answer pair with highest matching score #### Method: `get_scores` **Parameters** - `reference_answer` (list of str): List of gold answers - `candidate_answer` (str): Candidate answer to evaluate - `question` (str): The question being evaluated **Returns** - `dictionary`: Contains matching scores for all gold answer and candidate answer pairs #### Method: `evaluate` **Parameters** - `reference_answer` (list of str): List of gold answers - `candidate_answer` (str): Candidate answer to evaluate - `question` (str): The question being evaluated **Returns** - `boolean`: True if candidate answer matches any gold answer #### Method: `get_question_type` **Parameters** - `reference_answer` (list of str): List of gold answers - `question` (str): The question being evaluated **Returns** - `list`: The type of the question (what, who, when, how, why, which, where) #### Method: `get_judgement_type` **Parameters** - `reference_answer` (list of str): List of gold answers - `candidate_answer` (str): Candidate answer to evaluate - `question` (str): The question being evaluated **Returns** - `list`: A list revised rules applicable to judge answer correctness ```python from qa_metrics.pedant import PEDANT pedant = PEDANT() scores = pedant.get_scores(reference_answer, candidate_answer, question) match_result = pedant.evaluate(reference_answer, candidate_answer, question) ``` ### 4. Transformer Neural Evaluation #### Method: `get_score` **Parameters** - `reference_answer` (str): A Gold answer - `candidate_answer` (str): Candidate answer to evaluate - `question` (str): The question being evaluated **Returns** - `float`: The similarity score between two strings (0 to 1) #### Method: `get_highest_score` **Parameters** - `reference_answer` (list of str): List of gold answers - `candidate_answer` (str): Candidate answer to evaluate - `question` (str): The question being evaluated **Returns** - `dictionary`: Contains the gold answer and candidate answer pair with highest matching score #### Method: `get_scores` **Parameters** - `reference_answer` (list of str): List of gold answers - `candidate_answer` (str): Candidate answer to evaluate - `question` (str): The question being evaluated **Returns** - `dictionary`: Contains matching scores for all gold answer and candidate answer pairs #### Method: `transformer_match` **Parameters** - `reference_answer` (list of str): List of gold answers - `candidate_answer` (str): Candidate answer to evaluate - `question` (str): The question being evaluated **Returns** - `boolean`: True if transformer model considers candidate answer equivalent to any gold answer ```python from qa_metrics.transformerMatcher import TransformerMatcher ### supports `zli12321/roberta-large-qa-evaluator`, `zli12321/answer_equivalence_bert`, `zli12321/answer_equivalence_distilbert`, `zli12321/answer_equivalence_roberta`, `zli12321/answer_equivalence_distilroberta` tm = TransformerMatcher("zli12321/answer_equivalence_tiny_bert") match_result = tm.transformer_match(reference_answer, candidate_answer, question) ``` ### 5. LLM Integration #### Method: `prompt_gpt` **Parameters** - `prompt` (str): The input prompt text - `model_engine` (str): OpenAI model to use (e.g., 'gpt-3.5-turbo') - `temperature` (float): Controls randomness (0-1) - `max_tokens` (int): Maximum tokens in response ```python from qa_metrics.prompt_llm import CloseLLM model = CloseLLM() model.set_openai_api_key(YOUR_OPENAI_KEY) result = model.prompt_gpt(prompt=prompt, model_engine='gpt-3.5-turbo') ``` #### Method: `prompt_claude` **Parameters** - `prompt` (str): The input prompt text - `model_engine` (str): Claude model to use - `anthropic_version` (str): API version - `max_tokens_to_sample` (int): Maximum tokens in response - `temperature` (float): Controls randomness (0-1) ```python model = CloseLLM() model.set_anthropic_api_key(YOUR_ANTHROPIC_KEY) result = model.prompt_claude(prompt=prompt, model_engine='claude-v1') ``` #### Method: `prompt` **Parameters** - `message` (str): The input message text - `model_engine` (str): Model to use - `temperature` (float): Controls randomness (0-1) - `max_tokens` (int): Maximum tokens in response ```python from qa_metrics.prompt_open_llm import OpenLLM model = OpenLLM() model.set_deepinfra_key(YOUR_DEEPINFRA_KEY) result = model.prompt(message=prompt, model_engine='mistralai/Mixtral-8x7B-Instruct-v0.1') ``` ## 🤗 Model Hub Our fine-tuned models are available on Huggingface: - [BERT](https://huggingface.co./Zongxia/answer_equivalence_bert) - [DistilRoBERTa](https://huggingface.co./Zongxia/answer_equivalence_distilroberta) - [DistilBERT](https://huggingface.co./Zongxia/answer_equivalence_distilbert) - [RoBERTa](https://huggingface.co./Zongxia/answer_equivalence_roberta) - [Tiny-BERT](https://huggingface.co./Zongxia/answer_equivalence_tiny_bert) - [RoBERTa-Large](https://huggingface.co./Zongxia/answer_equivalence_roberta-large) ## 📚 Resources - [Full Paper](https://arxiv.org/abs/2402.11161) - [Dataset Repository](https://github.com/zli12321/Answer_Equivalence_Dataset.git) - [Supported Models on Deepinfra](https://deepinfra.com/models) ## 📄 Citation ```bibtex @misc{li2024pedantspreciseevaluationsdiverse, title={PEDANTS: Cheap but Effective and Interpretable Answer Equivalence}, author={Zongxia Li and Ishani Mondal and Yijun Liang and Huy Nghiem and Jordan Lee Boyd-Graber}, year={2024}, eprint={2402.11161}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2402.11161}, } ``` ## 📝 License This project is licensed under the [MIT License](LICENSE.md). ## 📬 Contact For questions or comments, please contact: zli12321@umd.edu