File size: 1,261 Bytes
c5b2f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
373f290
c5b2f2f
373f290
c5b2f2f
373f290
f4c9378
c5b2f2f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from typing import Dict, List, Any
from FlagEmbedding import BGEM3FlagModel

class EndpointHandler():
    def __init__(self, path=""):
        self.model = BGEM3FlagModel(path, use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation

        # Preload all the elements you are going to need at inference.
        # pseudo:
        # self.model= load_model(path)

    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        """
        Args:
            data (:obj:):
                includes the input data and the parameters for the inference.
        Return:
            A :obj:`list`:. The object returned should be a list of vector
        """
        inputs = data.pop("inputs", data)
        parameters = data.pop("parameters", None)

        # pass inputs with all kwargs in data
        if parameters is not None:
            embeddings = self.model.encode(inputs, **parameters)['dense_vecs']
        else:
            embeddings = self.model.encode(inputs)['dense_vecs']
        # postprocess the prediction
        list_of_lists = [arr.tolist() for arr in embeddings]
        return list_of_lists

        # return self.model.encode(inputs, batch_size=12, max_length=8192)['dense_vecs']