File size: 2,089 Bytes
5778310 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: apache-2.0
base_model: facebook/convnextv2-huge-22k-384
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: 5-finetuned-spiderTraining50-200
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 5-finetuned-spiderTraining50-200
This model is a fine-tuned version of [facebook/convnextv2-huge-22k-384](https://huggingface.co./facebook/convnextv2-huge-22k-384) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.9165
- Accuracy: 0.0120
- Precision: 0.0002
- Recall: 0.02
- F1: 0.0005
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 20
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 3.9332 | 1.0 | 399 | 3.9282 | 0.0180 | 0.0004 | 0.02 | 0.0007 |
| 3.9102 | 2.0 | 799 | 3.9328 | 0.0230 | 0.0005 | 0.02 | 0.0009 |
| 3.9237 | 3.0 | 1199 | 3.9213 | 0.0230 | 0.0005 | 0.02 | 0.0009 |
| 3.9162 | 4.0 | 1599 | 3.9160 | 0.0150 | 0.0003 | 0.02 | 0.0006 |
| 3.9169 | 4.99 | 1995 | 3.9165 | 0.0120 | 0.0002 | 0.02 | 0.0005 |
### Framework versions
- Transformers 4.33.3
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3
|