--- license: apache-2.0 base_model: zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: 10-finetuned-taiwanSpiders results: [] --- # 10-finetuned-taiwanSpiders This model is a fine-tuned version of [zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000](https://huggingface.co./zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2014 - Accuracy: 0.9486 - Precision: 0.9408 - Recall: 0.9397 - F1: 0.9395 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.6309 | 1.0 | 759 | 0.4255 | 0.8779 | 0.8669 | 0.8560 | 0.8499 | | 0.6529 | 2.0 | 1519 | 0.3880 | 0.8882 | 0.8728 | 0.8710 | 0.8634 | | 0.53 | 3.0 | 2278 | 0.3389 | 0.9024 | 0.8953 | 0.8929 | 0.8896 | | 0.4746 | 4.0 | 3038 | 0.3393 | 0.9017 | 0.9036 | 0.8868 | 0.8881 | | 0.4565 | 5.0 | 3797 | 0.3061 | 0.9169 | 0.9266 | 0.9044 | 0.9094 | | 0.3145 | 6.0 | 4557 | 0.2600 | 0.9282 | 0.9237 | 0.9148 | 0.9173 | | 0.3034 | 7.0 | 5316 | 0.2613 | 0.9345 | 0.9306 | 0.9216 | 0.9225 | | 0.2724 | 8.0 | 6076 | 0.2410 | 0.9417 | 0.9371 | 0.9312 | 0.9319 | | 0.2055 | 9.0 | 6835 | 0.2127 | 0.9457 | 0.9382 | 0.9378 | 0.9370 | | 0.2103 | 9.99 | 7590 | 0.2014 | 0.9486 | 0.9408 | 0.9397 | 0.9395 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3