Model save
Browse files
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
model-index:
|
12 |
+
- name: 10-finetuned-taiwanSpiders
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# 10-finetuned-taiwanSpiders
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000](https://huggingface.co/zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.2014
|
24 |
+
- Accuracy: 0.9486
|
25 |
+
- Precision: 0.9408
|
26 |
+
- Recall: 0.9397
|
27 |
+
- F1: 0.9395
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 0.0005
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 16
|
49 |
+
- seed: 42
|
50 |
+
- distributed_type: multi-GPU
|
51 |
+
- gradient_accumulation_steps: 4
|
52 |
+
- total_train_batch_size: 64
|
53 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
+
- lr_scheduler_type: linear
|
55 |
+
- lr_scheduler_warmup_ratio: 0.1
|
56 |
+
- num_epochs: 10
|
57 |
+
|
58 |
+
### Training results
|
59 |
+
|
60 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
61 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
62 |
+
| 0.6309 | 1.0 | 759 | 0.4255 | 0.8779 | 0.8669 | 0.8560 | 0.8499 |
|
63 |
+
| 0.6529 | 2.0 | 1519 | 0.3880 | 0.8882 | 0.8728 | 0.8710 | 0.8634 |
|
64 |
+
| 0.53 | 3.0 | 2278 | 0.3389 | 0.9024 | 0.8953 | 0.8929 | 0.8896 |
|
65 |
+
| 0.4746 | 4.0 | 3038 | 0.3393 | 0.9017 | 0.9036 | 0.8868 | 0.8881 |
|
66 |
+
| 0.4565 | 5.0 | 3797 | 0.3061 | 0.9169 | 0.9266 | 0.9044 | 0.9094 |
|
67 |
+
| 0.3145 | 6.0 | 4557 | 0.2600 | 0.9282 | 0.9237 | 0.9148 | 0.9173 |
|
68 |
+
| 0.3034 | 7.0 | 5316 | 0.2613 | 0.9345 | 0.9306 | 0.9216 | 0.9225 |
|
69 |
+
| 0.2724 | 8.0 | 6076 | 0.2410 | 0.9417 | 0.9371 | 0.9312 | 0.9319 |
|
70 |
+
| 0.2055 | 9.0 | 6835 | 0.2127 | 0.9457 | 0.9382 | 0.9378 | 0.9370 |
|
71 |
+
| 0.2103 | 9.99 | 7590 | 0.2014 | 0.9486 | 0.9408 | 0.9397 | 0.9395 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.33.3
|
77 |
+
- Pytorch 2.0.1+cu117
|
78 |
+
- Datasets 2.14.5
|
79 |
+
- Tokenizers 0.13.3
|