--- license: apache-2.0 base_model: zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: 10-finetuned-ausSpiders2000 results: [] --- # 10-finetuned-ausSpiders2000 This model is a fine-tuned version of [zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000](https://huggingface.co./zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0508 - Accuracy: 0.9858 - Precision: 0.9892 - Recall: 0.9865 - F1: 0.9878 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.1997 | 1.0 | 281 | 0.2264 | 0.9281 | 0.9395 | 0.8869 | 0.9045 | | 0.17 | 2.0 | 563 | 0.1382 | 0.9565 | 0.8540 | 0.8266 | 0.8381 | | 0.21 | 3.0 | 845 | 0.1404 | 0.9583 | 0.9747 | 0.9064 | 0.9349 | | 0.1976 | 4.0 | 1127 | 0.0987 | 0.9689 | 0.9716 | 0.8917 | 0.9128 | | 0.178 | 5.0 | 1408 | 0.1219 | 0.9636 | 0.9393 | 0.9600 | 0.9472 | | 0.0659 | 6.0 | 1690 | 0.0804 | 0.9813 | 0.9815 | 0.9801 | 0.9807 | | 0.0917 | 7.0 | 1972 | 0.1062 | 0.9734 | 0.9765 | 0.9676 | 0.9716 | | 0.108 | 8.0 | 2254 | 0.0568 | 0.9849 | 0.9868 | 0.9794 | 0.9828 | | 0.1151 | 9.0 | 2535 | 0.0508 | 0.9858 | 0.9876 | 0.9863 | 0.9869 | | 0.049 | 9.97 | 2810 | 0.0508 | 0.9858 | 0.9892 | 0.9865 | 0.9878 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3