--- license: apache-2.0 base_model: zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: 10-finetuned-ausSpiders2000 results: [] --- # 10-finetuned-ausSpiders2000 This model is a fine-tuned version of [zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000](https://huggingface.co./zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0184 - Accuracy: 0.9929 - Precision: 0.9955 - Recall: 0.9910 - F1: 0.9932 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2684 | 1.0 | 141 | 0.1271 | 0.9503 | 0.9350 | 0.9199 | 0.9198 | | 0.1698 | 2.0 | 282 | 0.1668 | 0.9485 | 0.9229 | 0.9195 | 0.9123 | | 0.1538 | 3.0 | 423 | 0.0906 | 0.9645 | 0.9764 | 0.9365 | 0.9523 | | 0.153 | 4.0 | 564 | 0.0860 | 0.9707 | 0.9685 | 0.9451 | 0.9525 | | 0.0699 | 5.0 | 705 | 0.0528 | 0.9813 | 0.9830 | 0.9728 | 0.9776 | | 0.1107 | 6.0 | 846 | 0.0460 | 0.9831 | 0.9832 | 0.9879 | 0.9855 | | 0.0647 | 7.0 | 987 | 0.0319 | 0.9849 | 0.9905 | 0.9765 | 0.9829 | | 0.0461 | 8.0 | 1128 | 0.0350 | 0.9840 | 0.9866 | 0.9710 | 0.9776 | | 0.0371 | 9.0 | 1269 | 0.0198 | 0.9920 | 0.9952 | 0.9903 | 0.9927 | | 0.0496 | 10.0 | 1410 | 0.0184 | 0.9929 | 0.9955 | 0.9910 | 0.9932 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3