Model save
Browse files
README.md
CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
|
21 |
This model is a fine-tuned version of [zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000](https://huggingface.co/zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000) on an unknown dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
-
- Accuracy: 0.
|
25 |
-
- Precision: 0.
|
26 |
-
- Recall: 0.
|
27 |
-
- F1: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -44,12 +44,12 @@ More information needed
|
|
44 |
|
45 |
The following hyperparameters were used during training:
|
46 |
- learning_rate: 0.0005
|
47 |
-
- train_batch_size:
|
48 |
-
- eval_batch_size:
|
49 |
- seed: 42
|
50 |
- distributed_type: multi-GPU
|
51 |
- gradient_accumulation_steps: 4
|
52 |
-
- total_train_batch_size:
|
53 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
- lr_scheduler_type: linear
|
55 |
- lr_scheduler_warmup_ratio: 0.1
|
@@ -59,16 +59,16 @@ The following hyperparameters were used during training:
|
|
59 |
|
60 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
61 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
|
73 |
|
74 |
### Framework versions
|
|
|
20 |
|
21 |
This model is a fine-tuned version of [zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000](https://huggingface.co/zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000) on an unknown dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.0184
|
24 |
+
- Accuracy: 0.9929
|
25 |
+
- Precision: 0.9955
|
26 |
+
- Recall: 0.9910
|
27 |
+
- F1: 0.9932
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
44 |
|
45 |
The following hyperparameters were used during training:
|
46 |
- learning_rate: 0.0005
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 16
|
49 |
- seed: 42
|
50 |
- distributed_type: multi-GPU
|
51 |
- gradient_accumulation_steps: 4
|
52 |
+
- total_train_batch_size: 64
|
53 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
- lr_scheduler_type: linear
|
55 |
- lr_scheduler_warmup_ratio: 0.1
|
|
|
59 |
|
60 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
61 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
62 |
+
| 0.2684 | 1.0 | 141 | 0.1271 | 0.9503 | 0.9350 | 0.9199 | 0.9198 |
|
63 |
+
| 0.1698 | 2.0 | 282 | 0.1668 | 0.9485 | 0.9229 | 0.9195 | 0.9123 |
|
64 |
+
| 0.1538 | 3.0 | 423 | 0.0906 | 0.9645 | 0.9764 | 0.9365 | 0.9523 |
|
65 |
+
| 0.153 | 4.0 | 564 | 0.0860 | 0.9707 | 0.9685 | 0.9451 | 0.9525 |
|
66 |
+
| 0.0699 | 5.0 | 705 | 0.0528 | 0.9813 | 0.9830 | 0.9728 | 0.9776 |
|
67 |
+
| 0.1107 | 6.0 | 846 | 0.0460 | 0.9831 | 0.9832 | 0.9879 | 0.9855 |
|
68 |
+
| 0.0647 | 7.0 | 987 | 0.0319 | 0.9849 | 0.9905 | 0.9765 | 0.9829 |
|
69 |
+
| 0.0461 | 8.0 | 1128 | 0.0350 | 0.9840 | 0.9866 | 0.9710 | 0.9776 |
|
70 |
+
| 0.0371 | 9.0 | 1269 | 0.0198 | 0.9920 | 0.9952 | 0.9903 | 0.9927 |
|
71 |
+
| 0.0496 | 10.0 | 1410 | 0.0184 | 0.9929 | 0.9955 | 0.9910 | 0.9932 |
|
72 |
|
73 |
|
74 |
### Framework versions
|