--- license: apache-2.0 base_model: zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: 10-finetuned-ausSpiders results: [] --- # 10-finetuned-ausSpiders This model is a fine-tuned version of [zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000](https://huggingface.co./zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0399 - Accuracy: 0.9896 - Precision: 0.9831 - Recall: 0.9577 - F1: 0.9683 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.1696 | 1.0 | 767 | 0.1719 | 0.9477 | 0.9104 | 0.8399 | 0.8558 | | 0.114 | 2.0 | 1534 | 0.0823 | 0.9754 | 0.9637 | 0.8941 | 0.9185 | | 0.1065 | 3.0 | 2301 | 0.0857 | 0.9708 | 0.8828 | 0.8472 | 0.8572 | | 0.112 | 4.0 | 3069 | 0.0781 | 0.9756 | 0.9361 | 0.8767 | 0.8803 | | 0.1006 | 5.0 | 3836 | 0.0610 | 0.9821 | 0.9662 | 0.9362 | 0.9485 | | 0.0838 | 6.0 | 4603 | 0.0571 | 0.9817 | 0.9397 | 0.9442 | 0.9380 | | 0.0766 | 7.0 | 5370 | 0.0507 | 0.9832 | 0.9626 | 0.9175 | 0.9302 | | 0.0523 | 8.0 | 6138 | 0.0398 | 0.9870 | 0.9470 | 0.9763 | 0.9577 | | 0.0531 | 9.0 | 6905 | 0.0456 | 0.9892 | 0.9881 | 0.9556 | 0.9697 | | 0.0419 | 10.0 | 7670 | 0.0399 | 0.9896 | 0.9831 | 0.9577 | 0.9683 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3