File size: 2,599 Bytes
5522dd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
base_model: facebook/convnextv2-pico-1k-224
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: 10-convnextv2-pico-1k-224-finetuned-spiderTraining20-500
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 10-convnextv2-pico-1k-224-finetuned-spiderTraining20-500

This model is a fine-tuned version of [facebook/convnextv2-pico-1k-224](https://huggingface.co./facebook/convnextv2-pico-1k-224) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3910
- Accuracy: 0.8949
- Precision: 0.8942
- Recall: 0.8897
- F1: 0.8904

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 25
- eval_batch_size: 25
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 100
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 1.1025        | 1.0   | 80   | 0.9880          | 0.6847   | 0.7201    | 0.6796 | 0.6821 |
| 0.7366        | 2.0   | 160  | 0.6502          | 0.8098   | 0.8198    | 0.8103 | 0.8059 |
| 0.6295        | 3.0   | 240  | 0.5303          | 0.8348   | 0.8410    | 0.8279 | 0.8270 |
| 0.493         | 4.0   | 320  | 0.4666          | 0.8539   | 0.8522    | 0.8533 | 0.8491 |
| 0.3939        | 5.0   | 400  | 0.4831          | 0.8579   | 0.8658    | 0.8503 | 0.8508 |
| 0.3338        | 6.0   | 480  | 0.4551          | 0.8729   | 0.8711    | 0.8670 | 0.8665 |
| 0.2841        | 7.0   | 560  | 0.4357          | 0.8939   | 0.8961    | 0.8931 | 0.8921 |
| 0.2406        | 8.0   | 640  | 0.4074          | 0.8829   | 0.8820    | 0.8760 | 0.8776 |
| 0.2008        | 9.0   | 720  | 0.4074          | 0.8909   | 0.8900    | 0.8872 | 0.8868 |
| 0.2075        | 10.0  | 800  | 0.3910          | 0.8949   | 0.8942    | 0.8897 | 0.8904 |


### Framework versions

- Transformers 4.33.3
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3