zkdeng commited on
Commit
73d7f90
·
verified ·
1 Parent(s): 80febb9

Model save

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/convnextv2-large-22k-384
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: 10-convnextv2-large-22k-384-finetuned-spiderTraining20-500
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # 10-convnextv2-large-22k-384-finetuned-spiderTraining20-500
20
+
21
+ This model is a fine-tuned version of [facebook/convnextv2-large-22k-384](https://huggingface.co/facebook/convnextv2-large-22k-384) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.0881
24
+ - Accuracy: 0.9740
25
+ - Precision: 0.9749
26
+ - Recall: 0.9729
27
+ - F1: 0.9733
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 5e-05
47
+ - train_batch_size: 15
48
+ - eval_batch_size: 15
49
+ - seed: 42
50
+ - distributed_type: multi-GPU
51
+ - gradient_accumulation_steps: 4
52
+ - total_train_batch_size: 60
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - lr_scheduler_warmup_ratio: 0.1
56
+ - num_epochs: 10
57
+
58
+ ### Training results
59
+
60
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
61
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
62
+ | 0.5835 | 1.0 | 133 | 0.4317 | 0.8659 | 0.8765 | 0.8664 | 0.8594 |
63
+ | 0.3813 | 2.0 | 266 | 0.2008 | 0.9499 | 0.9533 | 0.9464 | 0.9488 |
64
+ | 0.3476 | 2.99 | 399 | 0.1535 | 0.9580 | 0.9591 | 0.9563 | 0.9570 |
65
+ | 0.1858 | 4.0 | 533 | 0.1591 | 0.9540 | 0.9542 | 0.9535 | 0.9532 |
66
+ | 0.1962 | 5.0 | 666 | 0.1356 | 0.9570 | 0.9565 | 0.9566 | 0.9556 |
67
+ | 0.1674 | 6.0 | 799 | 0.1290 | 0.9610 | 0.9612 | 0.9597 | 0.9599 |
68
+ | 0.1673 | 6.99 | 932 | 0.1138 | 0.9660 | 0.9669 | 0.9643 | 0.9651 |
69
+ | 0.1793 | 8.0 | 1066 | 0.0919 | 0.9720 | 0.9714 | 0.9707 | 0.9706 |
70
+ | 0.1369 | 9.0 | 1199 | 0.0936 | 0.9690 | 0.9690 | 0.9676 | 0.9677 |
71
+ | 0.1256 | 9.98 | 1330 | 0.0881 | 0.9740 | 0.9749 | 0.9729 | 0.9733 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.33.3
77
+ - Pytorch 2.0.1+cu117
78
+ - Datasets 2.14.5
79
+ - Tokenizers 0.13.3