File size: 1,781 Bytes
86562ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
base_model: zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: 1-finetuned-spiderTraining5-100
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 1-finetuned-spiderTraining5-100

This model is a fine-tuned version of [zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000](https://huggingface.co./zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0329
- Accuracy: 1.0
- Precision: 1.0
- Recall: 1.0
- F1: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1  |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:---:|
| 0.6503        | 0.96  | 12   | 0.0329          | 1.0      | 1.0       | 1.0    | 1.0 |


### Framework versions

- Transformers 4.33.2
- Pytorch 2.2.0.dev20230921
- Datasets 2.14.5
- Tokenizers 0.13.3