--- model-index: - name: text_emb_V1 results: - dataset: config: default name: MTEB AFQMC (default) revision: b44c3b011063adb25877c13823db83bb193913c4 split: validation type: C-MTEB/AFQMC metrics: - type: pearson value: 55.1136 - type: spearman value: 57.1755 - type: cosine_pearson value: 55.1136 - type: cosine_spearman value: 57.1755 - type: manhattan_pearson value: 56.5728 - type: manhattan_spearman value: 57.1558 - type: euclidean_pearson value: 56.6013 - type: euclidean_spearman value: 57.1755 - type: main_score value: 57.1755 task: type: STS - dataset: config: default name: MTEB ATEC (default) revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865 split: validation type: C-MTEB/ATEC metrics: - type: pearson value: 55.882799999999996 - type: spearman value: 56.4007 - type: cosine_pearson value: 55.882799999999996 - type: cosine_spearman value: 56.4007 - type: manhattan_pearson value: 60.958999999999996 - type: manhattan_spearman value: 56.3925 - type: euclidean_pearson value: 60.95080000000001 - type: euclidean_spearman value: 56.4007 - type: main_score value: 56.4007 task: type: STS - dataset: config: default name: MTEB ATEC (default) revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865 split: test type: C-MTEB/ATEC metrics: - type: pearson value: 56.549099999999996 - type: spearman value: 56.425599999999996 - type: cosine_pearson value: 56.549099999999996 - type: cosine_spearman value: 56.425599999999996 - type: manhattan_pearson value: 61.853199999999994 - type: manhattan_spearman value: 56.401199999999996 - type: euclidean_pearson value: 61.8652 - type: euclidean_spearman value: 56.425599999999996 - type: main_score value: 56.425599999999996 task: type: STS - dataset: config: default name: MTEB BQ (default) revision: e3dda5e115e487b39ec7e618c0c6a29137052a55 split: validation type: C-MTEB/BQ metrics: - type: pearson value: 74.49090000000001 - type: spearman value: 74.3392 - type: cosine_pearson value: 74.49090000000001 - type: cosine_spearman value: 74.3392 - type: manhattan_pearson value: 75.2621 - type: manhattan_spearman value: 74.3669 - type: euclidean_pearson value: 75.24640000000001 - type: euclidean_spearman value: 74.3392 - type: main_score value: 74.3392 task: type: STS - dataset: config: default name: MTEB BQ (default) revision: e3dda5e115e487b39ec7e618c0c6a29137052a55 split: test type: C-MTEB/BQ metrics: - type: pearson value: 72.0912 - type: spearman value: 72.0973 - type: cosine_pearson value: 72.0912 - type: cosine_spearman value: 72.0973 - type: manhattan_pearson value: 72.6131 - type: manhattan_spearman value: 72.1342 - type: euclidean_pearson value: 72.5862 - type: euclidean_spearman value: 72.0973 - type: main_score value: 72.0973 task: type: STS - dataset: config: default name: MTEB Cmnli (default) revision: 41bc36f332156f7adc9e38f53777c959b2ae9766 split: validation type: C-MTEB/CMNLI metrics: - type: similarity_accuracy value: 84.7023 - type: similarity_accuracy_threshold value: 71.7336 - type: similarity_f1 value: 85.5698 - type: similarity_f1_threshold value: 70.102 - type: similarity_precision value: 82.3848 - type: similarity_recall value: 89.011 - type: similarity_ap value: 91.9215 - type: cosine_accuracy value: 84.7023 - type: cosine_accuracy_threshold value: 71.7336 - type: cosine_f1 value: 85.5698 - type: cosine_f1_threshold value: 70.102 - type: cosine_precision value: 82.3848 - type: cosine_recall value: 89.011 - type: cosine_ap value: 91.9099 - type: manhattan_accuracy value: 84.8467 - type: manhattan_accuracy_threshold value: 1559.3493 - type: manhattan_f1 value: 85.589 - type: manhattan_f1_threshold value: 1628.4885 - type: manhattan_precision value: 82.4204 - type: manhattan_recall value: 89.011 - type: manhattan_ap value: 91.9403 - type: euclidean_accuracy value: 84.7023 - type: euclidean_accuracy_threshold value: 75.18820000000001 - type: euclidean_f1 value: 85.5698 - type: euclidean_f1_threshold value: 77.3279 - type: euclidean_precision value: 82.3848 - type: euclidean_recall value: 89.011 - type: euclidean_ap value: 91.9099 - type: dot_accuracy value: 84.7023 - type: dot_accuracy_threshold value: 71.7336 - type: dot_f1 value: 85.5698 - type: dot_f1_threshold value: 70.102 - type: dot_precision value: 82.3848 - type: dot_recall value: 89.011 - type: dot_ap value: 91.9201 - type: max_accuracy value: 84.8467 - type: max_f1 value: 85.589 - type: max_precision value: 82.4204 - type: max_recall value: 89.011 - type: max_ap value: 91.9403 - type: main_score value: 84.8467 task: type: PairClassification - dataset: config: default name: MTEB LCQMC (default) revision: 17f9b096f80380fce5ed12a9be8be7784b337daf split: test type: C-MTEB/LCQMC metrics: - type: pearson value: 70.8121 - type: spearman value: 77.81949999999999 - type: cosine_pearson value: 70.8121 - type: cosine_spearman value: 77.81949999999999 - type: manhattan_pearson value: 77.81620000000001 - type: manhattan_spearman value: 77.8609 - type: euclidean_pearson value: 77.8304 - type: euclidean_spearman value: 77.81949999999999 - type: main_score value: 77.81949999999999 task: type: STS - dataset: config: default name: MTEB Ocnli (default) revision: 66e76a618a34d6d565d5538088562851e6daa7ec split: validation type: C-MTEB/OCNLI metrics: - type: similarity_accuracy value: 83.7574 - type: similarity_accuracy_threshold value: 74.45 - type: similarity_f1 value: 84.7047 - type: similarity_f1_threshold value: 70.1439 - type: similarity_precision value: 81.1412 - type: similarity_recall value: 88.59559999999999 - type: similarity_ap value: 90.13210000000001 - type: cosine_accuracy value: 83.7574 - type: cosine_accuracy_threshold value: 74.45 - type: cosine_f1 value: 84.7047 - type: cosine_f1_threshold value: 70.1439 - type: cosine_precision value: 81.1412 - type: cosine_recall value: 88.59559999999999 - type: cosine_ap value: 90.1322 - type: manhattan_accuracy value: 83.9199 - type: manhattan_accuracy_threshold value: 1496.4575 - type: manhattan_f1 value: 84.9772 - type: manhattan_f1_threshold value: 1605.1863 - type: manhattan_precision value: 81.5534 - type: manhattan_recall value: 88.7012 - type: manhattan_ap value: 90.239 - type: euclidean_accuracy value: 83.7574 - type: euclidean_accuracy_threshold value: 71.4842 - type: euclidean_f1 value: 84.7047 - type: euclidean_f1_threshold value: 77.2737 - type: euclidean_precision value: 81.1412 - type: euclidean_recall value: 88.59559999999999 - type: euclidean_ap value: 90.13210000000001 - type: dot_accuracy value: 83.7574 - type: dot_accuracy_threshold value: 74.45 - type: dot_f1 value: 84.7047 - type: dot_f1_threshold value: 70.1439 - type: dot_precision value: 81.1412 - type: dot_recall value: 88.59559999999999 - type: dot_ap value: 90.1322 - type: max_accuracy value: 83.9199 - type: max_f1 value: 84.9772 - type: max_precision value: 81.5534 - type: max_recall value: 88.7012 - type: max_ap value: 90.239 - type: main_score value: 83.9199 task: type: PairClassification - dataset: config: default name: MTEB PAWSX (default) revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1 split: test type: C-MTEB/PAWSX metrics: - type: pearson value: 33.814699999999995 - type: spearman value: 35.4391 - type: cosine_pearson value: 33.814699999999995 - type: cosine_spearman value: 35.4223 - type: manhattan_pearson value: 36.013 - type: manhattan_spearman value: 35.5863 - type: euclidean_pearson value: 35.876999999999995 - type: euclidean_spearman value: 35.436800000000005 - type: main_score value: 35.4223 task: type: STS - dataset: config: default name: MTEB QBQTC (default) revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7 split: test type: C-MTEB/QBQTC metrics: - type: pearson value: 55.0385 - type: spearman value: 54.0346 - type: cosine_pearson value: 55.0385 - type: cosine_spearman value: 54.0353 - type: manhattan_pearson value: 54.2188 - type: manhattan_spearman value: 54.3934 - type: euclidean_pearson value: 53.8578 - type: euclidean_spearman value: 54.0357 - type: main_score value: 54.0353 task: type: STS - dataset: config: zh name: MTEB STS22 (zh) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: pearson value: 35.320499999999996 - type: spearman value: 45.4569 - type: cosine_pearson value: 35.320499999999996 - type: cosine_spearman value: 45.4569 - type: manhattan_pearson value: 39.5784 - type: manhattan_spearman value: 45.2067 - type: euclidean_pearson value: 39.8407 - type: euclidean_spearman value: 45.4569 - type: main_score value: 45.4569 task: type: STS - dataset: config: default name: MTEB STSB (default) revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0 split: validation type: C-MTEB/STSB metrics: - type: pearson value: 72.63 - type: spearman value: 74.65039999999999 - type: cosine_pearson value: 72.63 - type: cosine_spearman value: 74.6505 - type: manhattan_pearson value: 75.0128 - type: manhattan_spearman value: 74.558 - type: euclidean_pearson value: 75.0734 - type: euclidean_spearman value: 74.6505 - type: main_score value: 74.6505 task: type: STS - dataset: config: default name: MTEB STSB (default) revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0 split: test type: C-MTEB/STSB metrics: - type: pearson value: 72.6558 - type: spearman value: 72.18860000000001 - type: cosine_pearson value: 72.6558 - type: cosine_spearman value: 72.1876 - type: manhattan_pearson value: 73.25540000000001 - type: manhattan_spearman value: 72.0847 - type: euclidean_pearson value: 73.3532 - type: euclidean_spearman value: 72.1878 - type: main_score value: 72.1876 task: type: STS tags: - mteb license: apache-2.0 ---