中文  |  English



Llama3-Chinese


GitHub Contributors

## 介绍 **Llama3-Chinese**是**以Meta-Llama-3-8B为底座**,使用 [DORA](https://arxiv.org/pdf/2402.09353.pdf) + [LORA+](https://arxiv.org/pdf/2402.12354.pdf) 的训练方法,在50w高质量中文多轮SFT数据 + 10w英文多轮SFT数据 + 2000单轮自我认知数据训练而来的大模型。 **Github:** [https://github.com/seanzhang-zhichen/llama3-chinese](https://github.com/seanzhang-zhichen/llama3-chinese) ![DEMO](./images/web_demo.png) ## 模型下载 | Model | Download | |:-------------------:|:-----------:| | Meta-Llama-3-8B |[ 🤗 HuggingFace](https://huggingface.co./meta-llama/Meta-Llama-3-8B) [ 🤖 ModelScope](https://modelscope.cn/models/LLM-Research/Meta-Llama-3-8B)| | Llama3-Chinese-Lora |[ 🤗 HuggingFace](https://huggingface.co./zhichen/Llama3-Chinese-Lora) [ 🤖 ModelScope](https://modelscope.cn/models/seanzhang/Llama3-Chinese-Lora)| | Llama3-Chinese (合并好的模型) |[ 🤗 HuggingFace](https://huggingface.co./zhichen/Llama3-Chinese) [ 🤖 ModelScope](https://modelscope.cn/models/seanzhang/Llama3-Chinese)| ## 合并LORA模型(可跳过) 1、下载 [Meta-Llama-3-8B](https://modelscope.cn/models/LLM-Research/Meta-Llama-3-8B) ```bash git clone https://www.modelscope.cn/LLM-Research/Meta-Llama-3-8B.git ``` 2、下载[Llama3-Chinese-Lora](https://www.modelscope.cn/models/seanzhang/Llama3-Chinese-Lora) **From ModelScope** ```bash git lfs install git clone https://www.modelscope.cn/seanzhang/Llama3-Chinese-Lora.git ``` **From HuggingFace** ```bash git lfs install git clone https://huggingface.co./zhichen/Llama3-Chinese-Lora ``` 3、合并模型 ```bash python merge_lora.py \ --base_model path/to/Meta-Llama-3-8B \ --lora_model path/to/lora/Llama3-Chinese-Lora \ --output_dir ./Llama3-Chinese ``` ## 下载 Llama3-Chinese(合并好的模型) **From ModelScope** ```bash git lfs install git clone https://www.modelscope.cn/seanzhang/Llama3-Chinese.git ``` **From HuggingFace** ```bash git lfs install git clone https://huggingface.co./zhichen/Llama3-Chinese ``` ## 推理 ```python from transformers import AutoTokenizer, AutoModelForCausalLM model_id = "zhichen/Llama3-Chinese" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="auto", device_map="auto") messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "你好"}, ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) outputs = model.generate( input_ids, max_new_tokens=2048, do_sample=True, temperature=0.7, top_p=0.95, ) response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True)) ``` ## 命令行推理 ```bash python cli_demo.py --model_path zhichen/Llama3-Chinese ``` ## web推理 ```bash python web_demo.py --model_path zhichen/Llama3-Chinese ``` ## vllm web 推理 1、使用[vllm](https://github.com/vllm-project/vllm)部署模型 ```bash python -m vllm.entrypoints.openai.api_server --served-model-name Llama3-Chinese --model ./Llama3-Chinese(换成你自己的合并后的模型路径) ``` 2、在命令行执行 ```bash python vllm_web_demo.py --model Llama3-Chinese ``` ## 训练数据集 [匠数科技大模型sft数据集](https://modelscope.cn/datasets/deepctrl/deepctrl-sft-data) ## LICENSE 本项目仅可应用于研究目的,项目开发者不承担任何因使用本项目(包含但不限于数据、模型、代码等)导致的危害或损失。详细请参考[免责声明](https://github.com/seanzhang-zhichen/Llama3-Chinese/blob/main/DISCLAIMER)。 Llama3-Chinese项目代码的授权协议为 [The Apache License 2.0](./LICENSE),代码可免费用做商业用途,模型权重和数据只能用于研究目的。请在产品说明中附加Llama3-Chinese的链接和授权协议。 ## Citation 如果你在研究中使用了Llama3-Chinese,请按如下格式引用: ```latex @misc{Llama3-Chinese, title={Llama3-Chinese}, author={Zhichen Zhang, Xin LU, Long Chen}, year={2024}, howpublished={\url{https://github.com/seanzhang-zhichen/llama3-chinese}}, } ``` ## Acknowledgement [meta-llama/llama3](https://github.com/meta-llama/llama3)
[hiyouga/LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) ## Star History [![Star History Chart](https://api.star-history.com/svg?repos=seanzhang-zhichen/Llama3-Chinese&type=Date)](https://star-history.com/#seanzhang-zhichen/Llama3-Chinese&Date)