Add Plant DNAMamba model for open chromatin prediction
Browse files- README.md +60 -3
- config.json +1 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer_config.json +35 -0
README.md
CHANGED
@@ -1,3 +1,60 @@
|
|
1 |
-
---
|
2 |
-
license: cc-by-nc-sa-4.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
widget:
|
4 |
+
- text: AGTCGCCGCAACCCACACACGGACGGCTCGACGTGGCGATCTTAGCGGCTCATCCGCCCGGCCTCCCTCGCGCTCGATCGCTACGCAGCCTACGCTCGTTTCGCTCGGTTCGGTGGGTCGCCGATCTGGCGCCACGGCGGCTACCAACGACACCGCGATTGAGAAGGGTGCGTGGCCGTGGAGTCGTGGAGAAACGCCCGCGCGCGCGGGTGCGGCGAGGGACGACGACCGCGTCGTGCGGATCGATTGGCGGGGCAGCTCGGCGCCCCG
|
5 |
+
tags:
|
6 |
+
- DNA
|
7 |
+
- biology
|
8 |
+
- genomics
|
9 |
+
---
|
10 |
+
# Plant foundation DNA large language models
|
11 |
+
|
12 |
+
The plant DNA large language models (LLMs) contain a series of foundation models based on different model architectures, which are pre-trained on various plant reference genomes.
|
13 |
+
All the models have a comparable model size between 90 MB and 150 MB, BPE tokenizer is used for tokenization and 8000 tokens are included in the vocabulary.
|
14 |
+
|
15 |
+
|
16 |
+
**Developed by:** zhangtaolab
|
17 |
+
|
18 |
+
### Model Sources
|
19 |
+
|
20 |
+
- **Repository:** [Plant DNA LLMs](https://github.com/zhangtaolab/plant_DNA_LLMs)
|
21 |
+
- **Manuscript:** [Versatile applications of foundation DNA language models in plant genomes]()
|
22 |
+
|
23 |
+
### Architecture
|
24 |
+
|
25 |
+
The model is trained based on the OpenAI GPT-2 model with modified tokenizer specific for DNA sequence.
|
26 |
+
|
27 |
+
### How to use
|
28 |
+
|
29 |
+
Install the runtime library first:
|
30 |
+
```bash
|
31 |
+
pip install transformers
|
32 |
+
```
|
33 |
+
|
34 |
+
Here is a simple code for inference:
|
35 |
+
```python
|
36 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
37 |
+
|
38 |
+
model_name = 'plant-dnagpt-H3K27ac'
|
39 |
+
# load model and tokenizer
|
40 |
+
model = AutoModelForSequenceClassification.from_pretrained(f'zhangtaolab/{model_name}', trust_remote_code=True)
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained(f'zhangtaolab/{model_name}', trust_remote_code=True)
|
42 |
+
|
43 |
+
# inference
|
44 |
+
sequences = ['GCTTTGGTTTATACCTTACACAACATAAATCACATAGTTAATCCCTAATCGTCTTTGATTCTCAATGTTTTGTTCATTTTTACCATGAACATCATCTGATTGATAAGTGCATAGAGAATTAACGGCTTACACTTTACACTTGCATAGATGATTCCTAAGTATGTCCT',
|
45 |
+
'TAGCCCCCTCCTCTCTTTATATAGTGCAATCTAATATATGAAAGGTTCGGTGATGGGGCCAATAAGTGTATTTAGGCTAGGCCTTCATGGGCCAAGCCCAAAAGTTTCTCAACACTCCCCCTTGAGCACTCACCGCGTAATGTCCATGCCTCGTCAAAACTCCATAAAAACCCAGTG']
|
46 |
+
pipe = pipeline('text-classification', model=model, tokenizer=tokenizer,
|
47 |
+
trust_remote_code=True, top_k=None)
|
48 |
+
results = pipe(sequences)
|
49 |
+
print(results)
|
50 |
+
|
51 |
+
```
|
52 |
+
|
53 |
+
|
54 |
+
### Training data
|
55 |
+
We use GPT2ForSequenceClassification to fine-tune the model.
|
56 |
+
Detailed training procedure can be found in our manuscript.
|
57 |
+
|
58 |
+
|
59 |
+
#### Hardware
|
60 |
+
Model was trained on a NVIDIA GTX1080Ti GPU (11 GB).
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"d_model": 768, "n_layer": 24, "vocab_size": 8000, "ssm_cfg": {}, "rms_norm": true, "residual_in_fp32": true, "fused_add_norm": true, "pad_vocab_size_multiple": 8, "tie_embeddings": true}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:352f4902d61600228a452de9e91c076e0289d104cced18e10931c4a5c5dc0a15
|
3 |
+
size 386759194
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|endoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<|endoftext|>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<|padding|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
}
|
20 |
+
},
|
21 |
+
"bos_token": "<|endoftext|>",
|
22 |
+
"clean_up_tokenization_spaces": true,
|
23 |
+
"eos_token": "<|endoftext|>",
|
24 |
+
"max_length": 1024,
|
25 |
+
"model_max_length": 512,
|
26 |
+
"pad_to_multiple_of": null,
|
27 |
+
"pad_token": "<|endoftext|>",
|
28 |
+
"pad_token_type_id": 0,
|
29 |
+
"padding_side": "right",
|
30 |
+
"stride": 0,
|
31 |
+
"tokenizer_class": "GPTNeoXTokenizer",
|
32 |
+
"truncation_side": "right",
|
33 |
+
"truncation_strategy": "longest_first",
|
34 |
+
"unk_token": "<|endoftext|>"
|
35 |
+
}
|