File size: 7,452 Bytes
57ed72b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
---
language: en
license: cc-by-sa-4.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
metrics:
- precision
- recall
- f1
widget:
- text: Inductively Coupled Plasma - Mass Spectrometry ( ICP - MS ) analysis of Longcliffe
SP52 limestone was undertaken to identify other impurities present , and the effect
of sorbent mass and SO2 concentration on elemental partitioning in the carbonator
between solid sorbent and gaseous phase was investigated , using a bubbler sampling
system .
- text: We extensively evaluate our work against benchmark and competitive protocols
across a range of metrics over three real connectivity and GPS traces such as
Sassy [ 44 ] , San Francisco Cabs [ 45 ] and Infocom 2006 [ 33 ] .
- text: In this research , we developed a robust two - layer classifier that can accurately
classify normal hearing ( NH ) from hearing impaired ( HI ) infants with congenital
sensori - neural hearing loss ( SNHL ) based on their Magnetic Resonance ( MR
) images .
- text: In situ Peak Force Tapping AFM was employed for determining morphology and
nano - mechanical properties of the surface layer .
- text: By means of a criterion of Gilmer for polynomially dense subsets of the ring
of integers of a number field , we show that , if h∈K[X ] maps every element of
OK of degree n to an algebraic integer , then h(X ) is integral - valued over
OK , that is , h(OK)⊂OK .
pipeline_tag: token-classification
base_model: bert-base-uncased
model-index:
- name: SpanMarker with bert-base-uncased on my-data
results:
- task:
type: token-classification
name: Named Entity Recognition
dataset:
name: my-data
type: unknown
split: test
metrics:
- type: f1
value: 0.6547008547008547
name: F1
- type: precision
value: 0.69009009009009
name: Precision
- type: recall
value: 0.6227642276422765
name: Recall
---
# SpanMarker with bert-base-uncased on my-data
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for Named Entity Recognition. This SpanMarker model uses [bert-base-uncased](https://huggingface.co./bert-base-uncased) as the underlying encoder.
## Model Details
### Model Description
- **Model Type:** SpanMarker
- **Encoder:** [bert-base-uncased](https://huggingface.co./bert-base-uncased)
- **Maximum Sequence Length:** 256 tokens
- **Maximum Entity Length:** 8 words
<!-- - **Training Dataset:** [Unknown](https://huggingface.co./datasets/unknown) -->
- **Language:** en
- **License:** cc-by-sa-4.0
### Model Sources
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
### Model Labels
| Label | Examples |
|:---------|:--------------------------------------------------------------------------------------------------------|
| Data | "an overall mitochondrial", "defect", "Depth time - series" |
| Material | "cross - shore measurement locations", "the subject 's fibroblasts", "COXI , COXII and COXIII subunits" |
| Method | "EFSA", "an approximation", "in vitro" |
| Process | "translation", "intake", "a significant reduction of synthesis" |
## Evaluation
### Metrics
| Label | Precision | Recall | F1 |
|:---------|:----------|:-------|:-------|
| **all** | 0.6901 | 0.6228 | 0.6547 |
| Data | 0.6136 | 0.5714 | 0.5918 |
| Material | 0.7926 | 0.7413 | 0.7661 |
| Method | 0.4286 | 0.3 | 0.3529 |
| Process | 0.6780 | 0.5854 | 0.6283 |
## Uses
### Direct Use for Inference
```python
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Run inference
entities = model.predict("In situ Peak Force Tapping AFM was employed for determining morphology and nano - mechanical properties of the surface layer .")
```
### Downstream Use
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
```python
from span_marker import SpanMarkerModel, Trainer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("span_marker_model_id-finetuned")
```
</details>
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:----------------------|:----|:--------|:----|
| Sentence length | 3 | 25.6049 | 106 |
| Entities per sentence | 0 | 5.2439 | 22 |
### Training Hyperparameters
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training Results
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
| 2.0134 | 300 | 0.0557 | 0.6921 | 0.5706 | 0.6255 | 0.7645 |
| 4.0268 | 600 | 0.0583 | 0.6994 | 0.6527 | 0.6752 | 0.7974 |
| 6.0403 | 900 | 0.0701 | 0.7085 | 0.6679 | 0.6876 | 0.8039 |
| 8.0537 | 1200 | 0.0797 | 0.6963 | 0.6870 | 0.6916 | 0.8129 |
### Framework Versions
- Python: 3.10.12
- SpanMarker: 1.5.0
- Transformers: 4.36.2
- PyTorch: 2.0.1+cu118
- Datasets: 2.16.1
- Tokenizers: 0.15.0
## Citation
### BibTeX
```
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |