File size: 7,452 Bytes
57ed72b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
---
language: en
license: cc-by-sa-4.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
metrics:
- precision
- recall
- f1
widget:
- text: Inductively Coupled Plasma - Mass Spectrometry ( ICP - MS ) analysis of Longcliffe
    SP52 limestone was undertaken to identify other impurities present , and the effect
    of sorbent mass and SO2 concentration on elemental partitioning in the carbonator
    between solid sorbent and gaseous phase was investigated , using a bubbler sampling
    system .
- text: We extensively evaluate our work against benchmark and competitive protocols
    across a range of metrics over three real connectivity and GPS traces such as
    Sassy [ 44 ] , San Francisco Cabs [ 45 ] and Infocom 2006 [ 33 ] .
- text: In this research , we developed a robust two - layer classifier that can accurately
    classify normal hearing ( NH ) from hearing impaired ( HI ) infants with congenital
    sensori - neural hearing loss ( SNHL ) based on their Magnetic Resonance ( MR
    ) images .
- text: In situ Peak Force Tapping AFM was employed for determining morphology and
    nano - mechanical properties of the surface layer .
- text: By means of a criterion of Gilmer for polynomially dense subsets of the ring
    of integers of a number field , we show that , if h∈K[X ] maps every element of
    OK of degree n to an algebraic integer , then h(X ) is integral - valued over
    OK , that is , h(OK)⊂OK .
pipeline_tag: token-classification
base_model: bert-base-uncased
model-index:
- name: SpanMarker with bert-base-uncased on my-data
  results:
  - task:
      type: token-classification
      name: Named Entity Recognition
    dataset:
      name: my-data
      type: unknown
      split: test
    metrics:
    - type: f1
      value: 0.6547008547008547
      name: F1
    - type: precision
      value: 0.69009009009009
      name: Precision
    - type: recall
      value: 0.6227642276422765
      name: Recall
---

# SpanMarker with bert-base-uncased on my-data

This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for Named Entity Recognition. This SpanMarker model uses [bert-base-uncased](https://huggingface.co./bert-base-uncased) as the underlying encoder.

## Model Details

### Model Description
- **Model Type:** SpanMarker
- **Encoder:** [bert-base-uncased](https://huggingface.co./bert-base-uncased)
- **Maximum Sequence Length:** 256 tokens
- **Maximum Entity Length:** 8 words
<!-- - **Training Dataset:** [Unknown](https://huggingface.co./datasets/unknown) -->
- **Language:** en
- **License:** cc-by-sa-4.0

### Model Sources

- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)

### Model Labels
| Label    | Examples                                                                                                |
|:---------|:--------------------------------------------------------------------------------------------------------|
| Data     | "an overall mitochondrial", "defect", "Depth time - series"                                             |
| Material | "cross - shore measurement locations", "the subject 's fibroblasts", "COXI , COXII and COXIII subunits" |
| Method   | "EFSA", "an approximation", "in vitro"                                                                  |
| Process  | "translation", "intake", "a significant reduction of synthesis"                                         |

## Evaluation

### Metrics
| Label    | Precision | Recall | F1     |
|:---------|:----------|:-------|:-------|
| **all**  | 0.6901    | 0.6228 | 0.6547 |
| Data     | 0.6136    | 0.5714 | 0.5918 |
| Material | 0.7926    | 0.7413 | 0.7661 |
| Method   | 0.4286    | 0.3    | 0.3529 |
| Process  | 0.6780    | 0.5854 | 0.6283 |

## Uses

### Direct Use for Inference

```python
from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Run inference
entities = model.predict("In situ Peak Force Tapping AFM was employed for determining morphology and nano - mechanical properties of the surface layer .")
```

### Downstream Use
You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

```python
from span_marker import SpanMarkerModel, Trainer

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")

# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003

# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
    model=model,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("span_marker_model_id-finetuned")
```
</details>

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set          | Min | Median  | Max |
|:----------------------|:----|:--------|:----|
| Sentence length       | 3   | 25.6049 | 106 |
| Entities per sentence | 0   | 5.2439  | 22  |

### Training Hyperparameters
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training Results
| Epoch  | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
| 2.0134 | 300  | 0.0557          | 0.6921               | 0.5706            | 0.6255        | 0.7645              |
| 4.0268 | 600  | 0.0583          | 0.6994               | 0.6527            | 0.6752        | 0.7974              |
| 6.0403 | 900  | 0.0701          | 0.7085               | 0.6679            | 0.6876        | 0.8039              |
| 8.0537 | 1200 | 0.0797          | 0.6963               | 0.6870            | 0.6916        | 0.8129              |

### Framework Versions
- Python: 3.10.12
- SpanMarker: 1.5.0
- Transformers: 4.36.2
- PyTorch: 2.0.1+cu118
- Datasets: 2.16.1
- Tokenizers: 0.15.0

## Citation

### BibTeX
```
@software{Aarsen_SpanMarker,
    author = {Aarsen, Tom},
    license = {Apache-2.0},
    title = {{SpanMarker for Named Entity Recognition}},
    url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->