--- base_model: deepseek-ai/deepseek-math-7b-base datasets: - zfz1/my_preference_gsm8k_deepseek library_name: peft license: other tags: - alignment-handbook - trl - orpo - generated_from_trainer model-index: - name: deepseek-8b-orpo-lora results: [] --- [Visualize in Weights & Biases](https://wandb.ai/thuzfz1/huggingface/runs/z4q90sz1) # deepseek-8b-orpo-lora This model is a fine-tuned version of [deepseek-ai/deepseek-math-7b-base](https://huggingface.co./deepseek-ai/deepseek-math-7b-base) on the zfz1/my_preference_gsm8k_deepseek dataset. It achieves the following results on the evaluation set: - Loss: 0.6818 - Rewards/chosen: -0.0338 - Rewards/rejected: -0.0840 - Rewards/accuracies: 0.8088 - Rewards/margins: 0.0502 - Logps/rejected: -0.8398 - Logps/chosen: -0.3377 - Logits/rejected: 34.4233 - Logits/chosen: 35.5254 - Nll Loss: 0.6414 - Log Odds Ratio: -0.4212 - Log Odds Chosen: 1.0634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 43 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.11.1 - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1