--- license: apache-2.0 tags: - generated_from_trainer - whisper-event metrics: - wer base_model: openai/whisper-medium model-index: - name: whisper-medium-mediaspeech-cv-tr results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 tr type: mozilla-foundation/common_voice_11_0 config: tr split: test args: tr metrics: - type: wer value: 9.9776 name: Wer --- # whisper-medium-mediaspeech-cv-tr This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co./openai/whisper-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1813 - Wer: 9.9776 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1187 | 0.33 | 1000 | 0.2169 | 13.7678 | | 0.0579 | 1.26 | 2000 | 0.1814 | 10.8222 | | 0.0313 | 2.19 | 3000 | 0.1813 | 9.9776 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2