--- tags: - sparse sparsity quantized onnx embeddings int8 - mteb - mteb model-index: - name: gte-large-quant results: - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 90.27260027646717 - type: cos_sim_spearman value: 87.97790825077952 - type: euclidean_pearson value: 88.42832241523092 - type: euclidean_spearman value: 87.97248644049293 - type: manhattan_pearson value: 88.13802465778512 - type: manhattan_spearman value: 87.43391995202266 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 85.1416039713116 - type: cos_sim_spearman value: 79.13359419669726 - type: euclidean_pearson value: 83.08042050989465 - type: euclidean_spearman value: 79.31565112619433 - type: manhattan_pearson value: 83.10376638254372 - type: manhattan_spearman value: 79.30772376012946 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 84.93030439955828 - type: cos_sim_spearman value: 75.98104622572393 - type: euclidean_pearson value: 81.20791722502764 - type: euclidean_spearman value: 75.74595761987686 - type: manhattan_pearson value: 81.23169425598003 - type: manhattan_spearman value: 75.73065403644094 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 85.6693892097855 - type: cos_sim_spearman value: 87.54973524492165 - type: euclidean_pearson value: 86.55642466103943 - type: euclidean_spearman value: 87.47921340148683 - type: manhattan_pearson value: 86.52043275063926 - type: manhattan_spearman value: 87.43869426658489 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 84.37393784507647 - type: cos_sim_spearman value: 81.98702164762233 - type: euclidean_pearson value: 84.22038158338351 - type: euclidean_spearman value: 81.9872746771322 - type: manhattan_pearson value: 84.21915949674062 - type: manhattan_spearman value: 81.97923386273747 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 87.34477744314285 - type: cos_sim_spearman value: 88.92669309789463 - type: euclidean_pearson value: 88.20128441166663 - type: euclidean_spearman value: 88.91524205114627 - type: manhattan_pearson value: 88.24425729639415 - type: manhattan_spearman value: 88.97457451709523 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 82.11827015492467 - type: cos_sim_spearman value: 83.59397157586835 - type: euclidean_pearson value: 82.97284591328044 - type: euclidean_spearman value: 83.74509747941255 - type: manhattan_pearson value: 82.974440264842 - type: manhattan_spearman value: 83.72260506292083 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 88.29744487677577 - type: cos_sim_spearman value: 88.50799779856109 - type: euclidean_pearson value: 89.0149154609955 - type: euclidean_spearman value: 88.72798794474068 - type: manhattan_pearson value: 89.14318227078863 - type: manhattan_spearman value: 88.98372697017017 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 70.114540107077 - type: cos_sim_spearman value: 69.72244488054433 - type: euclidean_pearson value: 70.03658853094686 - type: euclidean_spearman value: 68.96035610557085 - type: manhattan_pearson value: 69.83707789686764 - type: manhattan_spearman value: 68.71831797289812 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 84.86664469775837 - type: cos_sim_spearman value: 85.39649452953681 - type: euclidean_pearson value: 85.68509956626748 - type: euclidean_spearman value: 85.50984027606854 - type: manhattan_pearson value: 85.6688745008871 - type: manhattan_spearman value: 85.465201888803 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.8079207920792 - type: cos_sim_ap value: 95.62897445718106 - type: cos_sim_f1 value: 90.03083247687564 - type: cos_sim_precision value: 92.60042283298098 - type: cos_sim_recall value: 87.6 - type: dot_accuracy value: 99.67029702970297 - type: dot_ap value: 90.20258347721159 - type: dot_f1 value: 83.06172839506172 - type: dot_precision value: 82.04878048780488 - type: dot_recall value: 84.1 - type: euclidean_accuracy value: 99.80594059405941 - type: euclidean_ap value: 95.53963697283662 - type: euclidean_f1 value: 89.92405063291139 - type: euclidean_precision value: 91.07692307692308 - type: euclidean_recall value: 88.8 - type: manhattan_accuracy value: 99.80594059405941 - type: manhattan_ap value: 95.55714505339634 - type: manhattan_f1 value: 90.06085192697769 - type: manhattan_precision value: 91.35802469135803 - type: manhattan_recall value: 88.8 - type: max_accuracy value: 99.8079207920792 - type: max_ap value: 95.62897445718106 - type: max_f1 value: 90.06085192697769 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 85.87351731537224 - type: cos_sim_ap value: 72.87360532701162 - type: cos_sim_f1 value: 67.8826895565093 - type: cos_sim_precision value: 61.918225315354505 - type: cos_sim_recall value: 75.11873350923483 - type: dot_accuracy value: 80.15139774691542 - type: dot_ap value: 53.5201503222712 - type: dot_f1 value: 53.42203179614388 - type: dot_precision value: 46.64303996849773 - type: dot_recall value: 62.50659630606861 - type: euclidean_accuracy value: 85.87351731537224 - type: euclidean_ap value: 73.10465263888227 - type: euclidean_f1 value: 68.38209376101516 - type: euclidean_precision value: 61.63948316034739 - type: euclidean_recall value: 76.78100263852242 - type: manhattan_accuracy value: 85.83775406806939 - type: manhattan_ap value: 73.08358693248583 - type: manhattan_f1 value: 68.34053485927829 - type: manhattan_precision value: 61.303163628745025 - type: manhattan_recall value: 77.20316622691293 - type: max_accuracy value: 85.87351731537224 - type: max_ap value: 73.10465263888227 - type: max_f1 value: 68.38209376101516 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.85202002561415 - type: cos_sim_ap value: 85.58170945333845 - type: cos_sim_f1 value: 77.87783280804442 - type: cos_sim_precision value: 75.95140515222482 - type: cos_sim_recall value: 79.90452725592854 - type: dot_accuracy value: 85.29902588582296 - type: dot_ap value: 76.95795800483633 - type: dot_f1 value: 71.30231900452489 - type: dot_precision value: 65.91503267973856 - type: dot_recall value: 77.6485987064983 - type: euclidean_accuracy value: 88.80738929638684 - type: euclidean_ap value: 85.5344499509856 - type: euclidean_f1 value: 77.9805854353285 - type: euclidean_precision value: 75.97312495435624 - type: euclidean_recall value: 80.09701262704034 - type: manhattan_accuracy value: 88.7782822990647 - type: manhattan_ap value: 85.52577812395661 - type: manhattan_f1 value: 77.97958958110746 - type: manhattan_precision value: 74.76510067114094 - type: manhattan_recall value: 81.48290729904527 - type: max_accuracy value: 88.85202002561415 - type: max_ap value: 85.58170945333845 - type: max_f1 value: 77.9805854353285 license: mit language: - en --- # gte-large-quant This is the quantized (INT8) ONNX variant of the [gte-large](https://huggingface.co./thenlper/gte-large) embeddings model created with [DeepSparse Optimum](https://github.com/neuralmagic/optimum-deepsparse) for ONNX export/inference and Neural Magic's [Sparsify](https://github.com/neuralmagic/sparsify) for one-shot quantization. Current list of sparse and quantized gte ONNX models: | Links | Sparsification Method | | --------------------------------------------------------------------------------------------------- | ---------------------- | | [zeroshot/gte-large-sparse](https://huggingface.co./zeroshot/gte-large-sparse) | Quantization (INT8) & 50% Pruning | | [zeroshot/gte-large-quant](https://huggingface.co./zeroshot/gte-large-quant) | Quantization (INT8) | | [zeroshot/gte-base-sparse](https://huggingface.co./zeroshot/gte-base-sparse) | Quantization (INT8) & 50% Pruning | | [zeroshot/gte-base-quant](https://huggingface.co./zeroshot/gte-base-quant) | Quantization (INT8) | | [zeroshot/gte-small-sparse](https://huggingface.co./zeroshot/gte-small-sparse) | Quantization (INT8) & 50% Pruning | | [zeroshot/gte-small-quant](https://huggingface.co./zeroshot/gte-small-quant) | Quantization (INT8) | ```bash pip install -U deepsparse-nightly[sentence_transformers] ``` ```python from deepsparse.sentence_transformers import SentenceTransformer model = SentenceTransformer('zeroshot/gte-large-quant', export=False) # Our sentences we like to encode sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] # Sentences are encoded by calling model.encode() embeddings = model.encode(sentences) # Print the embeddings for sentence, embedding in zip(sentences, embeddings): print("Sentence:", sentence) print("Embedding:", embedding.shape) print("") ``` For further details regarding DeepSparse & Sentence Transformers integration, refer to the [DeepSparse README](https://github.com/neuralmagic/deepsparse/tree/main/src/deepsparse/sentence_transformers). For general questions on these models and sparsification methods, reach out to the engineering team on our [community Slack](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ). ![;)](https://media.giphy.com/media/bYg33GbNbNIVzSrr84/giphy-downsized-large.gif)