Upload 4 files
Browse files
test.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from ucimlrepo import fetch_ucirepo
|
3 |
+
from sklearn.model_selection import train_test_split
|
4 |
+
from sklearn.ensemble import RandomForestRegressor
|
5 |
+
import joblib
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
|
8 |
+
|
9 |
+
# 获取数据集
|
10 |
+
student_performance = fetch_ucirepo(id=320)
|
11 |
+
|
12 |
+
# 获取特征和目标
|
13 |
+
X = student_performance.data.features
|
14 |
+
y = student_performance.data.targets
|
15 |
+
|
16 |
+
# 查看特征和目标的前几行
|
17 |
+
print(X.head())
|
18 |
+
print(y.head())
|
19 |
+
|
20 |
+
# 编码分类变量
|
21 |
+
X = pd.get_dummies(X, drop_first=True)
|
22 |
+
|
23 |
+
# 划分训练集和测试集
|
24 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y['G3'], test_size=0.2, random_state=42)
|
25 |
+
|
26 |
+
# 创建并训练模型
|
27 |
+
model = RandomForestRegressor(n_estimators=100, random_state=42)
|
28 |
+
model.fit(X_train, y_train)
|
29 |
+
|
30 |
+
# 保存模型
|
31 |
+
model_path = "C:/Users/baby7/Desktop/推理/model_checkpoints/random_forest_model.pkl"
|
32 |
+
joblib.dump(model, model_path)
|
33 |
+
print(f"模型已保存到 {model_path}")
|
34 |
+
|
35 |
+
# 加载模型
|
36 |
+
loaded_model = joblib.load(model_path)
|
37 |
+
print("模型已加载")
|
38 |
+
|
39 |
+
# 使用加载的模型进行预测
|
40 |
+
y_pred = loaded_model.predict(X_test) # X_test 是您的测试数据
|
41 |
+
print("预测结果:", y_pred)
|
42 |
+
|
43 |
+
# 评估模型性能
|
44 |
+
from sklearn.metrics import mean_squared_error
|
45 |
+
|
46 |
+
mse = mean_squared_error(y_test, y_pred)
|
47 |
+
print(f'均方误差: {mse:.2f}')
|
48 |
+
|
49 |
+
import matplotlib.pyplot as plt
|
50 |
+
|
51 |
+
plt.scatter(y_test, y_pred)
|
52 |
+
plt.xlabel('真实值')
|
53 |
+
plt.ylabel('预测值')
|
54 |
+
plt.title('真实值与预测值对比')
|
55 |
+
plt.plot([0, 20], [0, 20], color='red', linestyle='--') # 参考线
|
56 |
+
plt.show()
|
test2.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from sklearn.model_selection import train_test_split
|
3 |
+
from sklearn.ensemble import RandomForestClassifier
|
4 |
+
from sklearn.metrics import classification_report
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import seaborn as sns
|
7 |
+
|
8 |
+
# 数据集 URL
|
9 |
+
data_url = 'https://archive.ics.uci.edu/static/public/17/data.csv'
|
10 |
+
|
11 |
+
# 加载数据集
|
12 |
+
df = pd.read_csv(data_url)
|
13 |
+
|
14 |
+
# 查看数据集的前几行
|
15 |
+
print("数据集的前几行:")
|
16 |
+
print(df.head())
|
17 |
+
|
18 |
+
# 数据预处理
|
19 |
+
# 编码目标变量(将 M 和 B 转换为 1 和 0)
|
20 |
+
df['Diagnosis'] = df['Diagnosis'].map({'M': 1, 'B': 0})
|
21 |
+
|
22 |
+
# 特征和目标
|
23 |
+
X = df.drop(columns=['ID', 'Diagnosis']) # 特征
|
24 |
+
y = df['Diagnosis'] # 目标
|
25 |
+
|
26 |
+
# 划分训练集和测试集
|
27 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
28 |
+
|
29 |
+
# 训练模型
|
30 |
+
model = RandomForestClassifier(random_state=42)
|
31 |
+
model.fit(X_train, y_train)
|
32 |
+
|
33 |
+
# 预测
|
34 |
+
y_pred = model.predict(X_test)
|
35 |
+
|
36 |
+
# 输出分类报告
|
37 |
+
print("\n分类报告:")
|
38 |
+
print(classification_report(y_test, y_pred))
|
39 |
+
|
40 |
+
# 可视化特征重要性
|
41 |
+
feature_importances = model.feature_importances_
|
42 |
+
features = X.columns
|
43 |
+
indices = range(len(features))
|
44 |
+
|
45 |
+
# 创建条形图
|
46 |
+
plt.figure(figsize=(12, 6))
|
47 |
+
sns.barplot(x=feature_importances, y=features)
|
48 |
+
plt.title('特征重要性')
|
49 |
+
plt.xlabel('重要性')
|
50 |
+
plt.ylabel('特征')
|
51 |
+
plt.show()
|
52 |
+
|
53 |
+
####################################################################
|
54 |
+
from ucimlrepo import fetch_ucirepo
|
55 |
+
|
56 |
+
# fetch dataset
|
57 |
+
breast_cancer_wisconsin_diagnostic = fetch_ucirepo(id=17)
|
58 |
+
|
59 |
+
# data (as pandas dataframes)
|
60 |
+
X = breast_cancer_wisconsin_diagnostic.data.features
|
61 |
+
y = breast_cancer_wisconsin_diagnostic.data.targets
|
62 |
+
|
63 |
+
# metadata
|
64 |
+
print(breast_cancer_wisconsin_diagnostic.metadata)
|
65 |
+
|
66 |
+
# variable information
|
67 |
+
print(breast_cancer_wisconsin_diagnostic.variables)
|
68 |
+
|
69 |
+
|
70 |
+
##################################################################
|
71 |
+
# 0 0.96 0.99 0.97 71
|
72 |
+
# 1 0.98 0.93 0.95 43
|
73 |
+
|
74 |
+
#accuracy 0.96 114
|
test3.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from sklearn.model_selection import train_test_split
|
3 |
+
from sklearn.ensemble import RandomForestClassifier
|
4 |
+
from sklearn.metrics import classification_report, confusion_matrix
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import seaborn as sns
|
7 |
+
|
8 |
+
# 数据集 URL
|
9 |
+
data_url = 'https://archive.ics.uci.edu/static/public/15/data.csv'
|
10 |
+
|
11 |
+
# 加载数据集
|
12 |
+
df = pd.read_csv(data_url)
|
13 |
+
|
14 |
+
# 查看数据集的前几行
|
15 |
+
print("数据集的前几行:")
|
16 |
+
print(df.head())
|
17 |
+
|
18 |
+
# 数据预处理
|
19 |
+
# 处理缺失值(将 '?' 替换为 NaN)
|
20 |
+
df['Bare_nuclei'] = df['Bare_nuclei'].replace('?', None).astype(float) # 将 '?' 替换为 None
|
21 |
+
df = df.dropna() # 删除含有缺失值的行
|
22 |
+
|
23 |
+
# 编码目标变量(将 2 和 4 转换为 0 和 1)
|
24 |
+
df['Class'] = df['Class'].map({2: 0, 4: 1})
|
25 |
+
|
26 |
+
# 特征和目标
|
27 |
+
X = df.drop(columns=['Sample_code_number', 'Class']) # 特征
|
28 |
+
y = df['Class'] # 目标
|
29 |
+
|
30 |
+
# 划分训练集和测试集
|
31 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
32 |
+
|
33 |
+
# 训练模型
|
34 |
+
model = RandomForestClassifier(random_state=42)
|
35 |
+
model.fit(X_train, y_train)
|
36 |
+
|
37 |
+
# 预测
|
38 |
+
y_pred = model.predict(X_test)
|
39 |
+
|
40 |
+
# 输出分类报告
|
41 |
+
print("\n分类报告:")
|
42 |
+
print(classification_report(y_test, y_pred))
|
43 |
+
|
44 |
+
# 可视化混淆矩阵
|
45 |
+
cm = confusion_matrix(y_test, y_pred)
|
46 |
+
plt.figure(figsize=(8, 6))
|
47 |
+
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['Benign', 'Malignant'], yticklabels=['Benign', 'Malignant'])
|
48 |
+
plt.ylabel('Actual')
|
49 |
+
plt.xlabel('Predicted')
|
50 |
+
plt.title('Confusion Matrix')
|
51 |
+
plt.show()
|
52 |
+
|
53 |
+
# 可视化特征重要性
|
54 |
+
feature_importances = model.feature_importances_
|
55 |
+
features = X.columns
|
56 |
+
indices = range(len(features))
|
57 |
+
|
58 |
+
# 创建条形图
|
59 |
+
plt.figure(figsize=(12, 6))
|
60 |
+
sns.barplot(x=feature_importances, y=features)
|
61 |
+
plt.title('Feature Importance')
|
62 |
+
plt.xlabel('Importance')
|
63 |
+
plt.ylabel('Feature')
|
64 |
+
plt.show()
|
65 |
+
|
66 |
+
|
67 |
+
###############################################
|
68 |
+
from ucimlrepo import fetch_ucirepo
|
69 |
+
|
70 |
+
# fetch dataset
|
71 |
+
breast_cancer_wisconsin_original = fetch_ucirepo(id=15)
|
72 |
+
|
73 |
+
# data (as pandas dataframes)
|
74 |
+
X = breast_cancer_wisconsin_original.data.features
|
75 |
+
y = breast_cancer_wisconsin_original.data.targets
|
76 |
+
|
77 |
+
# metadata
|
78 |
+
print(breast_cancer_wisconsin_original.metadata)
|
79 |
+
|
80 |
+
# variable information
|
81 |
+
print(breast_cancer_wisconsin_original.variables)
|
82 |
+
|
83 |
+
##########################################################
|
84 |
+
# 0 0.93 0.99 0.96 79
|
85 |
+
# 1 0.98 0.90 0.94 58
|
86 |
+
|
87 |
+
#accuracy 0.95 137
|
test4.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from sklearn.model_selection import train_test_split
|
3 |
+
from sklearn.ensemble import RandomForestClassifier
|
4 |
+
from sklearn.metrics import classification_report, confusion_matrix
|
5 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import seaborn as sns
|
8 |
+
|
9 |
+
# 数据集 URL
|
10 |
+
data_url = 'https://archive.ics.uci.edu/static/public/591/data.csv'
|
11 |
+
|
12 |
+
# 加载数据集
|
13 |
+
df = pd.read_csv(data_url)
|
14 |
+
|
15 |
+
# 查看数据集的前几行
|
16 |
+
print("数据集的前几行:")
|
17 |
+
print(df.head())
|
18 |
+
|
19 |
+
# 数据预处理
|
20 |
+
# 将 Gender 列中的 M 和 F 转换为 1 和 0
|
21 |
+
df['Gender'] = df['Gender'].map({'M': 1, 'F': 0})
|
22 |
+
|
23 |
+
# 特征和目标
|
24 |
+
X = df[['Name', 'Count', 'Probability']] # 特征
|
25 |
+
y = df['Gender'] # 目标
|
26 |
+
|
27 |
+
# 使用 TfidfVectorizer 对 Name 特征进行处理
|
28 |
+
vectorizer = TfidfVectorizer()
|
29 |
+
X_name = vectorizer.fit_transform(X['Name'])
|
30 |
+
|
31 |
+
# 将 Count 和 Probability 特征与 Name 特征合并
|
32 |
+
import scipy
|
33 |
+
X_combined = scipy.sparse.hstack((X_name, X[['Count', 'Probability']].values))
|
34 |
+
|
35 |
+
# 划分训练集和测试集
|
36 |
+
X_train, X_test, y_train, y_test = train_test_split(X_combined, y, test_size=0.2, random_state=42)
|
37 |
+
|
38 |
+
# 训练模型
|
39 |
+
model = RandomForestClassifier(random_state=42)
|
40 |
+
model.fit(X_train, y_train)
|
41 |
+
|
42 |
+
# 预测
|
43 |
+
y_pred = model.predict(X_test)
|
44 |
+
|
45 |
+
# 输出分类报告
|
46 |
+
print("\n分类报告:")
|
47 |
+
print(classification_report(y_test, y_pred))
|
48 |
+
|
49 |
+
# 可视化混淆矩阵
|
50 |
+
cm = confusion_matrix(y_test, y_pred)
|
51 |
+
plt.figure(figsize=(8, 6))
|
52 |
+
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['Female', 'Male'], yticklabels=['Female', 'Male'])
|
53 |
+
plt.ylabel('Actual')
|
54 |
+
plt.xlabel('Predicted')
|
55 |
+
plt.title('Confusion Matrix')
|
56 |
+
plt.show()
|
57 |
+
|
58 |
+
#############################################
|
59 |
+
from ucimlrepo import fetch_ucirepo
|
60 |
+
|
61 |
+
# fetch dataset
|
62 |
+
gender_by_name = fetch_ucirepo(id=591)
|
63 |
+
|
64 |
+
# data (as pandas dataframes)
|
65 |
+
X = gender_by_name.data.features
|
66 |
+
y = gender_by_name.data.targets
|
67 |
+
|
68 |
+
# metadata
|
69 |
+
print(gender_by_name.metadata)
|
70 |
+
|
71 |
+
# variable information
|
72 |
+
print(gender_by_name.variables)
|