--- license: mit base_model: facebook/bart-large-cnn tags: - generated_from_trainer metrics: - rouge model-index: - name: video_transcript_summary results: [] --- # video_transcript_summary This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co./facebook/bart-large-cnn) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.5472 - Rouge1: 0.3909 - Rouge2: 0.1328 - Rougel: 0.2802 - Rougelsum: 0.2801 - Gen Len: 69.8235 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 5 | 2.6381 | 0.3163 | 0.0838 | 0.2135 | 0.2138 | 72.1176 | | No log | 2.0 | 10 | 2.4739 | 0.345 | 0.0969 | 0.2372 | 0.2364 | 69.7647 | | No log | 3.0 | 15 | 2.6011 | 0.3719 | 0.116 | 0.2619 | 0.2605 | 69.7059 | | No log | 4.0 | 20 | 2.7476 | 0.3769 | 0.1156 | 0.2588 | 0.2572 | 72.9412 | | No log | 5.0 | 25 | 2.9283 | 0.3812 | 0.1206 | 0.2645 | 0.2625 | 74.4706 | | No log | 6.0 | 30 | 3.3089 | 0.3722 | 0.1194 | 0.2779 | 0.2769 | 70.1765 | | No log | 7.0 | 35 | 3.6585 | 0.3802 | 0.1177 | 0.2718 | 0.2719 | 73.2941 | | No log | 8.0 | 40 | 3.8924 | 0.3764 | 0.1056 | 0.2661 | 0.2651 | 70.8235 | | No log | 9.0 | 45 | 4.3638 | 0.3677 | 0.1144 | 0.2653 | 0.2634 | 74.0 | | No log | 10.0 | 50 | 4.5590 | 0.354 | 0.1069 | 0.2491 | 0.2477 | 71.0 | | No log | 11.0 | 55 | 4.5746 | 0.4103 | 0.1359 | 0.2935 | 0.293 | 72.5882 | | No log | 12.0 | 60 | 4.9055 | 0.3869 | 0.118 | 0.2705 | 0.2695 | 66.1176 | | No log | 13.0 | 65 | 5.0987 | 0.3947 | 0.1292 | 0.2713 | 0.2716 | 74.7647 | | No log | 14.0 | 70 | 5.3199 | 0.3814 | 0.1135 | 0.2839 | 0.2816 | 72.2353 | | No log | 15.0 | 75 | 5.4462 | 0.4092 | 0.1265 | 0.2896 | 0.29 | 68.0 | | No log | 16.0 | 80 | 5.4262 | 0.412 | 0.1282 | 0.293 | 0.2932 | 72.0 | | No log | 17.0 | 85 | 5.4873 | 0.3776 | 0.1051 | 0.2637 | 0.2636 | 68.8824 | | No log | 18.0 | 90 | 5.6043 | 0.3932 | 0.1106 | 0.2734 | 0.2727 | 67.9412 | | No log | 19.0 | 95 | 5.7495 | 0.3694 | 0.1075 | 0.2699 | 0.2692 | 69.7647 | | No log | 20.0 | 100 | 5.6518 | 0.3849 | 0.1109 | 0.2714 | 0.2709 | 65.5882 | | No log | 21.0 | 105 | 5.4524 | 0.3762 | 0.1101 | 0.2598 | 0.2596 | 64.5294 | | No log | 22.0 | 110 | 5.5472 | 0.3909 | 0.1328 | 0.2802 | 0.2801 | 69.8235 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1